Suppr超能文献

E(n) 等变笛卡尔张量消息传递原子间势

E(n)-Equivariant cartesian tensor message passing interatomic potential.

作者信息

Wang Junjie, Wang Yong, Zhang Haoting, Yang Ziyang, Liang Zhixin, Shi Jiuyang, Wang Hui-Tian, Xing Dingyu, Sun Jian

机构信息

National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.

出版信息

Nat Commun. 2024 Sep 1;15(1):7607. doi: 10.1038/s41467-024-51886-6.

Abstract

Machine learning potential (MLP) has been a popular topic in recent years for its capability to replace expensive first-principles calculations in some large systems. Meanwhile, message passing networks have gained significant attention due to their remarkable accuracy, and a wave of message passing networks based on Cartesian coordinates has emerged. However, the information of the node in these models is usually limited to scalars, and vectors. In this work, we propose High-order Tensor message Passing interatomic Potential (HotPP), an E(n) equivariant message passing neural network that extends the node embedding and message to an arbitrary order tensor. By performing some basic equivariant operations, high order tensors can be coupled very simply and thus the model can make direct predictions of high-order tensors such as dipole moments and polarizabilities without any modifications. The tests in several datasets show that HotPP not only achieves high accuracy in predicting target properties, but also successfully performs tasks such as calculating phonon spectra, infrared spectra, and Raman spectra, demonstrating its potential as a tool for future research.

摘要

近年来,机器学习势(MLP)因其能够在一些大型系统中替代昂贵的第一性原理计算而成为热门话题。与此同时,消息传递网络因其卓越的准确性而备受关注,基于笛卡尔坐标的消息传递网络如雨后春笋般涌现。然而,这些模型中节点的信息通常仅限于标量和向量。在这项工作中,我们提出了高阶张量消息传递原子间势(HotPP),这是一种E(n)等变消息传递神经网络,它将节点嵌入和消息扩展到任意阶张量。通过执行一些基本的等变操作,高阶张量可以非常简单地进行耦合,因此该模型可以直接预测诸如偶极矩和极化率等高阶张量,而无需任何修改。在几个数据集上的测试表明,HotPP不仅在预测目标属性方面取得了高精度,而且还成功地执行了诸如计算声子谱、红外光谱和拉曼光谱等任务,展示了其作为未来研究工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1228/11366765/4e82844a54ec/41467_2024_51886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验