Suppr超能文献

InGSA:将广义自注意力机制集成到卷积神经网络中用于阿尔茨海默病分类

InGSA: integrating generalized self-attention in CNN for Alzheimer's disease classification.

作者信息

Binzagr Faisal, Abulfaraj Anas W

机构信息

Department of Computer Science, King Abdulaziz University, Rabigh, Saudi Arabia.

Department of Information Systems, King Abdulaziz University, Rabigh, Saudi Arabia.

出版信息

Front Artif Intell. 2025 Mar 12;8:1540646. doi: 10.3389/frai.2025.1540646. eCollection 2025.

Abstract

Alzheimer's disease (AD) is an incurable neurodegenerative disorder that slowly impair the mental abilities. Early diagnosis, nevertheless, can greatly reduce the symptoms that are associated with the condition. Earlier techniques of diagnosing the AD from the MRI scans have been adopted by traditional machine learning technologies. However, such traditional methods involve depending on feature extraction that is usually complex, time-consuming, and requiring substantial effort from the medical personnel. Furthermore, these methods are usually not very specific as far as diagnosis is concerned. In general, traditional convolutional neural network (CNN) architectures have a problem with identifying AD. To this end, the developed framework consists of a new contrast enhancement approach, named haze-reduced local-global (HRLG). For multiclass AD classification, we introduce a global CNN-transformer model InGSA. The proposed InGSA is based on the InceptionV3 model which is pre-trained, and it encompasses an additional generalized self-attention (GSA) block at top of the network. This GSA module is capable of capturing the interaction not only in terms of the spatial relations within the feature space but also over the channel dimension it is capable of picking up fine detailing of the AD information while suppressing the noise. Furthermore, several GSA heads are used to exploit other dependency structures of global features as well. Our evaluation of InGSA on a two benchmark dataset, using various pre-trained networks, demonstrates the GSA's superior performance.

摘要

阿尔茨海默病(AD)是一种无法治愈的神经退行性疾病,会逐渐损害智力。然而,早期诊断可以大大减轻与该疾病相关的症状。传统机器学习技术采用了早期从磁共振成像(MRI)扫描中诊断AD的技术。然而,这种传统方法依赖于特征提取,而特征提取通常复杂、耗时,且需要医务人员付出大量努力。此外,就诊断而言,这些方法通常不是很特异。一般来说,传统的卷积神经网络(CNN)架构在识别AD方面存在问题。为此,所开发的框架包含一种名为 haze-reduced local-global(HRLG)的新对比度增强方法。对于多类AD分类,我们引入了一个全局CNN-Transformer模型InGSA。所提出的InGSA基于预训练的InceptionV3模型,并在网络顶部包含一个额外的广义自注意力(GSA)块。这个GSA模块不仅能够捕捉特征空间内空间关系方面的相互作用,还能在通道维度上捕捉,它能够在抑制噪声的同时提取AD信息的精细细节。此外,还使用了几个GSA头来利用全局特征的其他依赖结构。我们使用各种预训练网络在两个基准数据集上对InGSA进行评估,证明了GSA的卓越性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验