Jansen Gino E, de Vos Bob D, Molenaar Mitchel A, Schuuring Mark J, Bouma Berto J, Išgum Ivana
Amsterdam University Medical Center, Department of Biomedical Engineering & Physics, Amsterdam, The Netherlands.
University of Amsterdam, Informatics Institute, Amsterdam, The Netherlands.
J Med Imaging (Bellingham). 2024 Sep;11(5):054002. doi: 10.1117/1.JMI.11.5.054002. Epub 2024 Aug 30.
Interpreting echocardiographic exams requires substantial manual interaction as videos lack scan-plane information and have inconsistent image quality, ranging from clinically relevant to unrecognizable. Thus, a manual prerequisite step for analysis is to select the appropriate views that showcase both the target anatomy and optimal image quality. To automate this selection process, we present a method for automatic classification of routine views, recognition of unknown views, and quality assessment of detected views.
We train a neural network for view classification and employ the logit activations from the neural network for unknown view recognition. Subsequently, we train a linear regression algorithm that uses feature embeddings from the neural network to predict view quality scores. We evaluate the method on a clinical test set of 2466 echocardiography videos with expert-annotated view labels and a subset of 438 videos with expert-rated view quality scores. A second observer annotated a subset of 894 videos, including all quality-rated videos.
The proposed method achieved an accuracy of for the joint objective of routine view classification and unknown view recognition, whereas a second observer reached an accuracy of 87.6%. For view quality assessment, the method achieved a Spearman's rank correlation coefficient of 0.71, whereas a second observer reached a correlation coefficient of 0.62.
The proposed method approaches expert-level performance, enabling fully automatic selection of the most appropriate views for manual or automatic downstream analysis.
解读超声心动图检查需要大量人工交互,因为视频缺乏扫描平面信息且图像质量不一致,从临床相关到无法识别。因此,分析的一个手动前置步骤是选择既能展示目标解剖结构又具有最佳图像质量的合适视图。为了使这个选择过程自动化,我们提出了一种用于常规视图自动分类、未知视图识别以及检测到的视图质量评估的方法。
我们训练一个神经网络用于视图分类,并利用神经网络的逻辑激活进行未知视图识别。随后,我们训练一种线性回归算法,该算法使用神经网络的特征嵌入来预测视图质量分数。我们在一个包含专家标注视图标签的2466个超声心动图视频的临床测试集以及一个包含专家评定视图质量分数的438个视频子集上评估该方法。第二位观察者对894个视频的子集进行了标注,包括所有质量评级的视频。
对于常规视图分类和未知视图识别的联合目标,所提出的方法达到了[具体准确率]的准确率,而第二位观察者达到了87.6%的准确率。对于视图质量评估,该方法达到了0.71的斯皮尔曼等级相关系数,而第二位观察者达到了0.62的相关系数。
所提出的方法接近专家水平的性能,能够为手动或自动下游分析全自动选择最合适的视图。