Suppr超能文献

表征摄影图像到计算机断层扫描的低成本配准

Characterizing Low-cost Registration for Photographic Images to Computed Tomography.

作者信息

Kim Michael E, Lee Ho Hin, Ramadass Karthik, Gao Chenyu, Van Schaik Katherine, Tkaczyk Eric, Spraggins Jeffrey, Moyer Daniel C, Landman Bennett A

机构信息

Vanderbilt University, Department of Computer Science, Nashville, TN USA.

Vanderbilt University, Department of Electrical Engineering, Nashville, TN, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12930. doi: 10.1117/12.3005578. Epub 2024 Apr 2.

Abstract

Mapping information from photographic images to volumetric medical imaging scans is essential for linking spaces with physical environments, such as in image-guided surgery. Current methods of accurate photographic image to computed tomography (CT) image mapping can be computationally intensive and/or require specialized hardware. For general purpose 3-D mapping of bulk specimens in histological processing, a cost-effective solution is necessary. Here, we compare the integration of a commercial 3-D camera and cell phone imaging with a surface registration pipeline. Using surgical implants and chuck-eye steak as phantom tests, we obtain 3-D CT reconstruction and sets of photographic images from two sources: Canfield Imaging's H1 camera and an iPhone 14 Pro. We perform surface reconstruction from the photographic images using commercial tools and open-source code for Neural Radiance Fields (NeRF) respectively. We complete surface registration of the reconstructed surfaces with the iterative closest point (ICP) method. Manually placed landmarks were identified at three locations on each of the surfaces. Registration of the Canfield surfaces for three objects yields landmark distance errors of 1.747, 3.932, and 1.692 mm, while registration of the respective iPhone camera surfaces yields errors of 1.222, 2.061, and 5.155 mm. Photographic imaging of an organ sample prior to tissue sectioning provides a low-cost alternative to establish correspondence between histological samples and 3-D anatomical samples.

摘要

将摄影图像中的信息映射到容积医学成像扫描中,对于将空间与物理环境相联系至关重要,例如在图像引导手术中。当前将摄影图像精确映射到计算机断层扫描(CT)图像的方法可能计算量很大和/或需要专用硬件。对于组织学处理中大块标本的通用三维映射,需要一种经济高效的解决方案。在此,我们将商用三维相机和手机成像与表面配准流程的整合进行了比较。使用手术植入物和牛眼牛排作为模拟测试,我们从两个来源获得了三维CT重建和多组摄影图像:Canfield Imaging公司的H1相机和iPhone 14 Pro。我们分别使用商用工具和用于神经辐射场(NeRF)的开源代码从摄影图像进行表面重建。我们使用迭代最近点(ICP)方法完成重建表面与CT表面的配准。在每个表面的三个位置手动放置地标点。三个物体的Canfield表面配准产生的地标点距离误差分别为1.747、3.932和1.692毫米,而相应的iPhone相机表面配准产生的误差分别为1.222、2.061和5.155毫米。在组织切片之前对器官样本进行摄影成像,为在组织学样本和三维解剖样本之间建立对应关系提供了一种低成本的替代方法。

相似文献

5
Landmark constellation models for medical image content identification and localization.用于医学图像内容识别与定位的地标星座模型。
Int J Comput Assist Radiol Surg. 2016 Jul;11(7):1285-95. doi: 10.1007/s11548-015-1328-5. Epub 2015 Dec 11.
8
Lung registration using automatically detected landmarks.使用自动检测地标进行肺部配准。
Methods Inf Med. 2014;53(4):250-6. doi: 10.3414/ME13-01-0125. Epub 2014 Jul 4.

本文引用的文献

1
Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP).人类生物分子图谱计划(HuBMAP)的进展与展望。
Nat Cell Biol. 2023 Aug;25(8):1089-1100. doi: 10.1038/s41556-023-01194-w. Epub 2023 Jul 19.
2
Unsupervised Registration Refinement for Generating Unbiased Eye Atlas.用于生成无偏眼图谱的无监督配准优化
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2653753. Epub 2023 Apr 3.
3
A Roadmap for the Human Gut Cell Atlas.人类肠道细胞图谱研究路线图
Nat Rev Gastroenterol Hepatol. 2023 Sep;20(9):597-614. doi: 10.1038/s41575-023-00784-1. Epub 2023 May 31.
8
Validation of Vectra 3D Imaging Systems: A Review.Vectra 3D 成像系统的验证:综述
Int J Environ Res Public Health. 2022 Jul 20;19(14):8820. doi: 10.3390/ijerph19148820.
9
Multi-contrast computed tomography healthy kidney atlas.多对比度计算机断层扫描健康肾图谱。
Comput Biol Med. 2022 Jul;146:105555. doi: 10.1016/j.compbiomed.2022.105555. Epub 2022 Apr 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验