Kim Michael E, Lee Ho Hin, Ramadass Karthik, Gao Chenyu, Van Schaik Katherine, Tkaczyk Eric, Spraggins Jeffrey, Moyer Daniel C, Landman Bennett A
Vanderbilt University, Department of Computer Science, Nashville, TN USA.
Vanderbilt University, Department of Electrical Engineering, Nashville, TN, USA.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12930. doi: 10.1117/12.3005578. Epub 2024 Apr 2.
Mapping information from photographic images to volumetric medical imaging scans is essential for linking spaces with physical environments, such as in image-guided surgery. Current methods of accurate photographic image to computed tomography (CT) image mapping can be computationally intensive and/or require specialized hardware. For general purpose 3-D mapping of bulk specimens in histological processing, a cost-effective solution is necessary. Here, we compare the integration of a commercial 3-D camera and cell phone imaging with a surface registration pipeline. Using surgical implants and chuck-eye steak as phantom tests, we obtain 3-D CT reconstruction and sets of photographic images from two sources: Canfield Imaging's H1 camera and an iPhone 14 Pro. We perform surface reconstruction from the photographic images using commercial tools and open-source code for Neural Radiance Fields (NeRF) respectively. We complete surface registration of the reconstructed surfaces with the iterative closest point (ICP) method. Manually placed landmarks were identified at three locations on each of the surfaces. Registration of the Canfield surfaces for three objects yields landmark distance errors of 1.747, 3.932, and 1.692 mm, while registration of the respective iPhone camera surfaces yields errors of 1.222, 2.061, and 5.155 mm. Photographic imaging of an organ sample prior to tissue sectioning provides a low-cost alternative to establish correspondence between histological samples and 3-D anatomical samples.
将摄影图像中的信息映射到容积医学成像扫描中,对于将空间与物理环境相联系至关重要,例如在图像引导手术中。当前将摄影图像精确映射到计算机断层扫描(CT)图像的方法可能计算量很大和/或需要专用硬件。对于组织学处理中大块标本的通用三维映射,需要一种经济高效的解决方案。在此,我们将商用三维相机和手机成像与表面配准流程的整合进行了比较。使用手术植入物和牛眼牛排作为模拟测试,我们从两个来源获得了三维CT重建和多组摄影图像:Canfield Imaging公司的H1相机和iPhone 14 Pro。我们分别使用商用工具和用于神经辐射场(NeRF)的开源代码从摄影图像进行表面重建。我们使用迭代最近点(ICP)方法完成重建表面与CT表面的配准。在每个表面的三个位置手动放置地标点。三个物体的Canfield表面配准产生的地标点距离误差分别为1.747、3.932和1.692毫米,而相应的iPhone相机表面配准产生的误差分别为1.222、2.061和5.155毫米。在组织切片之前对器官样本进行摄影成像,为在组织学样本和三维解剖样本之间建立对应关系提供了一种低成本的替代方法。