Wang Fengying, Wang Wanxi
College of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.
ACS Omega. 2025 Apr 1;10(14):14508-14513. doi: 10.1021/acsomega.5c01281. eCollection 2025 Apr 15.
Lithium-rich layered oxides (LLOs) have emerged as highly promising cathode materials for lithium-ion batteries due to their high specific capacity and cost-effectiveness. However, structural changes, oxygen release, and transition metal dissolution during cycling lead to irreversible voltage decay and capacity degradation, posing significant challenges for their practical application. While surface coatings with metal oxides offer partial mitigation, their poor electronic conductivity compromises rate capability and cycle stability. To tackle this challenge, we introduce an innovative dual-layer coating strategy by sequentially coating LLO (LiMnNiCoO) particles with an ion-conductive LiMgPO (LMP) inner layer and a conductive reduced graphene oxide (rGO) outer layer. The LMP layer mitigates electrolyte-induced side reactions, while the rGO layer enhances electron transport, synergistically improving the performance. This synergistic design enables the optimized LLO@LMP@rGO cathode to achieve 80% capacity retention after 200 cycles at 1 C (vs 31% for pristine LLO) and an impressive high-rate capacity of 145 mA h g at 8 C. The straightforward fabrication process, involving coprecipitation and thermal reduction, underscores its scalability for industrial production. Our work not only offers a viable pathway to enhance LLO cathodes but also inspires interfacial engineering strategies for advanced battery systems.
富锂层状氧化物(LLOs)因其高比容量和成本效益,已成为锂离子电池极具前景的正极材料。然而,循环过程中的结构变化、氧释放和过渡金属溶解会导致不可逆的电压衰减和容量退化,给其实际应用带来重大挑战。虽然金属氧化物表面涂层能起到部分缓解作用,但其较差的电子导电性会影响倍率性能和循环稳定性。为应对这一挑战,我们引入了一种创新的双层涂层策略,即先在LLOs(LiMnNiCoO)颗粒上涂覆离子导电的LiMgPO(LMP)内层,再涂覆导电的还原氧化石墨烯(rGO)外层。LMP层减轻了电解质引发的副反应,而rGO层增强了电子传输,协同提高了性能。这种协同设计使优化后的LLO@LMP@rGO正极在1 C下循环200次后容量保持率达到80%(原始LLO为31%),并在8 C时具有145 mA h g的出色高倍率容量。包括共沉淀和热还原的简单制造工艺突出了其用于工业生产的可扩展性。我们的工作不仅为增强LLO正极提供了一条可行途径,也为先进电池系统的界面工程策略提供了启发。