Suppr超能文献

大豆基因组学的革命:CRISPR 和高通量测序如何释放新的潜力。

Revolutionizing soybean genomics: How CRISPR and advanced sequencing are unlocking new potential.

机构信息

Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan.

Faculty of Allied Health Sciences, Superior University, Lahore, Pakistan.

出版信息

Funct Integr Genomics. 2024 Sep 3;24(5):153. doi: 10.1007/s10142-024-01435-7.

Abstract

Soybean Glycine max L., paleopolyploid genome, poses challenges to its genetic improvement. However, the development of reference genome assemblies and genome sequencing has completely changed the field of soybean genomics, allowing for more accurate and successful breeding techniques as well as research. During the single-cell revolution, one of the most advanced sequencing tools for examining the transcriptome landscape is single-cell RNA sequencing (scRNA-seq). Comprehensive resources for genetic improvement of soybeans may be found in the SoyBase and other genomics databases. CRISPR-Cas9 genome editing technology provides promising prospects for precise genetic modifications in soybean. This method has enhanced several soybean traits, including as yield, nutritional value, and resistance to both biotic and abiotic stresses. With base editing techniques that allow for precise DNA modifications, the use of CRISPR-Cas9 is further increased. With the availability of the reference genome for soybeans and the following assembly of wild and cultivated soybeans, significant chromosomal rearrangements and gene duplication events have been identified, offering new perspectives on the complex genomic structure of soybeans. Furthermore, major single nucleotide polymorphisms (SNPs) linked to stachyose and sucrose content have been found through genome-wide association studies (GWAS), providing important tools for enhancing soybean carbohydrate profiles. In order to open up new avenues for soybean genetic improvement, future research approaches include investigating transcriptional divergence processes, enhancing genetic resources, and incorporating CRISPR-Cas9 technologies.

摘要

大豆 Glycine max L. 是一个古老的多倍体基因组,这给其遗传改良带来了挑战。然而,参考基因组组装和基因组测序的发展彻底改变了大豆基因组学领域,使得更准确和成功的育种技术和研究成为可能。在单细胞革命期间,用于检查转录组图谱的最先进的测序工具之一是单细胞 RNA 测序(scRNA-seq)。SoyBase 和其他基因组学数据库为大豆的遗传改良提供了全面的资源。CRISPR-Cas9 基因组编辑技术为大豆的精确遗传修饰提供了有希望的前景。该方法增强了几个大豆特性,包括产量、营养价值以及对生物和非生物胁迫的抗性。随着允许精确 DNA 修饰的碱基编辑技术的出现,CRISPR-Cas9 的使用进一步增加。随着大豆参考基因组的出现以及随后对野生和栽培大豆的组装,已经确定了重大的染色体重排和基因复制事件,为大豆复杂基因组结构提供了新的视角。此外,通过全基因组关联研究(GWAS)发现了与棉子糖和蔗糖含量相关的主要单核苷酸多态性(SNP),为增强大豆碳水化合物图谱提供了重要工具。为了为大豆遗传改良开辟新途径,未来的研究方法包括研究转录分化过程、增强遗传资源和整合 CRISPR-Cas9 技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验