Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, S7N 5A9, Saskatchewan, Canada.
School of Computer Science, Shaanxi Normal University, 620 West Chang'an Avenue, 710119, Shaanxi, China.
Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab511.
Drug repositioning is proposed to find novel usages for existing drugs. Among many types of drug repositioning approaches, predicting drug-drug interactions (DDIs) helps explore the pharmacological functions of drugs and achieves potential drugs for novel treatments. A number of models have been applied to predict DDIs. The DDI network, which is constructed from the known DDIs, is a common part in many of the existing methods. However, the functions of DDIs are different, and thus integrating them in a single DDI graph may overlook some useful information. We propose a graph convolutional network with multi-kernel (GCNMK) to predict potential DDIs. GCNMK adopts two DDI graph kernels for the graph convolutional layers, namely, increased DDI graph consisting of 'increase'-related DDIs and decreased DDI graph consisting of 'decrease'-related DDIs. The learned drug features are fed into a block with three fully connected layers for the DDI prediction. We compare various types of drug features, whereas the target feature of drugs outperforms all other types of features and their concatenated features. In comparison with three different DDI prediction methods, our proposed GCNMK achieves the best performance in terms of area under receiver operating characteristic curve and area under precision-recall curve. In case studies, we identify the top 20 potential DDIs from all unknown DDIs, and the top 10 potential DDIs from the unknown DDIs among breast, colorectal and lung neoplasms-related drugs. Most of them have evidence to support the existence of their interactions. fangxiang.wu@usask.ca.
药物重定位被提议用于寻找现有药物的新用途。在许多类型的药物重定位方法中,预测药物-药物相互作用(DDI)有助于探索药物的药理功能,并实现新治疗方法的潜在药物。已经应用了许多模型来预测 DDI。从已知的 DDI 构建的 DDI 网络是许多现有方法中的一个常见部分。然而,DDI 的功能不同,因此将它们整合到单个 DDI 图中可能会忽略一些有用的信息。我们提出了一种具有多核(GCNMK)的图卷积网络来预测潜在的 DDI。GCNMK 在图卷积层中采用了两种 DDI 图核,即由 '增加' 相关的 DDI 组成的增加 DDI 图和由 '减少' 相关的 DDI 组成的减少 DDI 图。学习到的药物特征被输入到一个具有三个全连接层的块中,用于 DDI 预测。我们比较了各种类型的药物特征,而药物的目标特征优于所有其他类型的特征及其串联特征。与三种不同的 DDI 预测方法相比,我们提出的 GCNMK 在接受者操作特征曲线下面积和精度-召回曲线下面积方面取得了最佳性能。在案例研究中,我们从所有未知的 DDI 中确定了前 20 个潜在的 DDI,从乳腺癌、结直肠癌和肺癌相关药物的未知 DDI 中确定了前 10 个潜在的 DDI。其中大多数都有证据支持它们相互作用的存在。fangxiang.wu@usask.ca。