Hosseini Seyyed Ali, Hajianfar Ghasem, Ghaffarian Pardis, Seyfi Milad, Hosseini Elahe, Aval Atlas Haddadi, Servaes Stijn, Hanaoka Mauro, Rosa-Neto Pedro, Chawla Sanjeev, Zaidi Habib, Ay Mohammad Reza
Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Hospital, McGill University, Montréal, Québec, Canada.
Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada.
Phys Eng Sci Med. 2024 Dec;47(4):1613-1625. doi: 10.1007/s13246-024-01475-0. Epub 2024 Sep 3.
The current study aimed to predict lymphovascular invasion (LVI) using multiple machine learning algorithms and multi-segmentation positron emission tomography (PET) radiomics in non-small cell lung cancer (NSCLC) patients, offering new avenues for personalized treatment strategies and improving patient outcomes. One hundred and twenty-six patients with NSCLC were enrolled in this study. Various automated and semi-automated PET image segmentation methods were applied, including Local Active Contour (LAC), Fuzzy-C-mean (FCM), K-means (KM), Watershed, Region Growing (RG), and Iterative thresholding (IT) with different percentages of the threshold. One hundred five radiomic features were extracted from each region of interest (ROI). Multiple feature selection methods, including Minimum Redundancy Maximum Relevance (MRMR), Recursive Feature Elimination (RFE), and Boruta, and multiple classifiers, including Multilayer Perceptron (MLP), Logistic Regression (LR), XGBoost (XGB), Naive Bayes (NB), and Random Forest (RF), were employed. Synthetic Minority Oversampling Technique (SMOTE) was also used to determine if it boosts the area under the ROC curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). Our results indicated that the combination of SMOTE, IT (with 45% threshold), RFE feature selection and LR classifier showed the best performance (AUC = 0.93, ACC = 0.84, SEN = 0.85, SPE = 0.84) followed by SMOTE, FCM segmentation, MRMR feature selection, and LR classifier (AUC = 0.92, ACC = 0.87, SEN = 1, SPE = 0.84). The highest ACC belonged to the IT segmentation (with 45 and 50% thresholds) alongside Boruta feature selection and the NB classifier without SMOTE (ACC = 0.9, AUC = 0.78 and 0.76, SEN = 0.7, and SPE = 0.94, respectively). Our results indicate that selection of appropriate segmentation method and machine learning algorithm may be helpful in successful prediction of LVI in patients with NSCLC with high accuracy using PET radiomics analysis.
本研究旨在利用多种机器学习算法和多分割正电子发射断层扫描(PET)放射组学预测非小细胞肺癌(NSCLC)患者的淋巴管侵犯(LVI),为个性化治疗策略提供新途径并改善患者预后。本研究纳入了126例NSCLC患者。应用了各种自动和半自动PET图像分割方法,包括局部活动轮廓(LAC)、模糊C均值(FCM)、K均值(KM)、分水岭算法、区域生长(RG)以及具有不同阈值百分比的迭代阈值法(IT)。从每个感兴趣区域(ROI)提取了105个放射组学特征。采用了多种特征选择方法,包括最小冗余最大相关性(MRMR)、递归特征消除(RFE)和博鲁塔算法,以及多种分类器,包括多层感知器(MLP)、逻辑回归(LR)、极端梯度提升(XGB)、朴素贝叶斯(NB)和随机森林(RF)。还使用了合成少数类过采样技术(SMOTE)来确定其是否能提高ROC曲线下面积(AUC)、准确率(ACC)、灵敏度(SEN)和特异度(SPE)。我们的结果表明,SMOTE、IT(阈值为45%)、RFE特征选择和LR分类器的组合表现最佳(AUC = 0.93,ACC = 0.84,SEN = 0.85,SPE = 0.84),其次是SMOTE、FCM分割、MRMR特征选择和LR分类器(AUC = 0.92,ACC = 0.87,SEN = 1,SPE = 0.84)。最高的ACC属于IT分割(阈值为45%和50%)以及博鲁塔特征选择和未使用SMOTE的NB分类器(ACC = 0.9,AUC分别为0.78和0.76,SEN = 0.7,SPE = 0.94)。我们的结果表明,选择合适的分割方法和机器学习算法可能有助于通过PET放射组学分析高精度地成功预测NSCLC患者的LVI。