Suppr超能文献

从适应性免疫受体的互补决定区网络中稳健地检测传染病、自身免疫和癌症。

Robust detection of infectious disease, autoimmunity, and cancer from the paratope networks of adaptive immune receptors.

机构信息

Department of Systems Immunology, Immunology Frontier Research Institute (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan.

Department of Genome Informatics, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan.

出版信息

Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae431.

Abstract

Liquid biopsies based on peripheral blood offer a minimally invasive alternative to solid tissue biopsies for the detection of diseases, primarily cancers. However, such tests currently consider only the serum component of blood, overlooking a potentially rich source of biomarkers: adaptive immune receptors (AIRs) expressed on circulating B and T cells. Machine learning-based classifiers trained on AIRs have been reported to accurately identify not only cancers but also autoimmune and infectious diseases as well. However, when using the conventional "clonotype cluster" representation of AIRs, individuals within a disease or healthy cohort exhibit vastly different features, limiting the generalizability of these classifiers. This study aimed to address the challenge of classifying specific diseases from circulating B or T cells by developing a novel representation of AIRs based on similarity networks constructed from their antigen-binding regions (paratopes). Features based on this novel representation, paratope cluster occupancies (PCOs), significantly improved disease classification performance for infectious disease, autoimmune disease, and cancer. Under identical methodological conditions, classifiers trained on PCOs achieved a mean AUC of 0.893 when applied to new individuals, outperforming clonotype cluster-based classifiers (AUC 0.714) and the best-performing published classifier (AUC 0.777). Surprisingly, for cancer patients, we observed that "healthy-biased" AIRs were predicted to target known cancer-associated antigens at dramatically higher rates than healthy AIRs as a whole (Z scores >75), suggesting an overlooked reservoir of cancer-targeting immune cells that could be identified by PCOs.

摘要

基于外周血的液体活检为疾病(主要是癌症)的检测提供了一种对组织活检具有侵入性较小的替代方法。然而,此类检测目前仅考虑血液的血清成分,而忽略了一个潜在的丰富生物标志物来源:循环 B 和 T 细胞上表达的适应性免疫受体 (AIR)。基于机器学习的 AIR 分类器已被报道能够准确识别不仅是癌症,还有自身免疫和传染病。然而,当使用常规的 AIR 表示“克隆型聚类”时,疾病或健康队列中的个体表现出截然不同的特征,限制了这些分类器的通用性。本研究旨在通过开发一种基于其抗原结合区域(表位)构建的相似性网络的新型 AIR 表示来解决从循环 B 或 T 细胞中分类特定疾病的挑战。基于这种新型表示的特征,表位聚类占有率(PCO)显著提高了传染病、自身免疫性疾病和癌症的疾病分类性能。在相同的方法条件下,当应用于新个体时,基于 PCO 训练的分类器的平均 AUC 达到 0.893,优于基于克隆型聚类的分类器(AUC 0.714)和表现最佳的已发表分类器(AUC 0.777)。令人惊讶的是,对于癌症患者,我们观察到“健康偏倚”的 AIR 预测以比健康 AIR 整体更高的比率针对已知的癌症相关抗原(Z 分数>75),这表明存在被忽视的针对癌症的免疫细胞库,可以通过 PCOs 识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f9b/11370640/ddcd1f27ee37/bbae431f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验