Suppr超能文献

CAD4TB(结核病计算机辅助检测)在儿科胸片中的准确性。

Accuracy of CAD4TB (Computer-Aided Detection for Tuberculosis) on paediatric chest radiographs.

机构信息

Vaccines and Immunity Theme, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.

Department of Immunology, College of Medicine, University of Ibadan, Ibadan, Nigeria.

出版信息

Eur Respir J. 2024 Nov 7;64(5). doi: 10.1183/13993003.00811-2024. Print 2024 Nov.

Abstract

BACKGROUND

Computer-aided detection (CAD) systems hold promise for improving tuberculosis (TB) detection on digital chest radiographs. However, data on their performance in exclusively paediatric populations are scarce.

METHODS

We conducted a retrospective diagnostic accuracy study evaluating the performance of CAD4TBv7 (Computer-Aided Detection for Tuberculosis version 7) using digital chest radiographs from well-characterised cohorts of Gambian children aged <15 years with presumed pulmonary TB. The children were consecutively recruited between 2012 and 2022. We measured CAD4TBv7 performance against a microbiological reference standard (MRS) of confirmed TB, and also performed Bayesian latent class analysis (LCA) to address the inherent limitations of the MRS in children. Diagnostic performance was assessed using the area under the receiver operating characteristic curve (AUROC) and point estimates of sensitivity and specificity.

RESULTS

A total of 724 children were included in the analysis, with confirmed TB in 58 (8%), unconfirmed TB in 145 (20%) and unlikely TB in 521 (72%). Using the MRS, CAD4TBv7 showed an AUROC of 0.70 (95% CI 0.60-0.79), and demonstrated sensitivity and specificity of 19.0% (95% CI 11-31%) and 99.0% (95% CI 98.0-100.0%), respectively. Applying Bayesian LCA with the assumption of conditional independence between tests, sensitivity and specificity estimates for CAD4TBv7 were 42.7% (95% CrI 29.2-57.5%) and 97.9% (95% CrI 96.6-98.8%), respectively. When allowing for conditional dependence between culture and Xpert assay, CAD4TBv7 demonstrated a sensitivity of 50.3% (95% CrI 32.9-70.0%) and specificity of 98.0% (95% CrI 96.7-98.9%).

CONCLUSION

Although CAD4TBv7 demonstrated high specificity, its suboptimal sensitivity underscores the crucial need for optimisation of CAD4TBv7 for detecting TB in children.

摘要

背景

计算机辅助检测 (CAD) 系统有望提高数字胸部 X 光片上的结核病 (TB) 检测能力。然而,关于其在纯儿科人群中的性能的数据却很少。

方法

我们进行了一项回顾性诊断准确性研究,评估了 CAD4TBv7(结核病计算机辅助检测版本 7)在来自具有明确特征的冈比亚儿童 (<15 岁) 疑似肺结核队列的数字胸部 X 光片上的性能。这些儿童在 2012 年至 2022 年间连续招募。我们将 CAD4TBv7 的性能与 TB 的微生物学参考标准 (MRS) 进行了比较,并进行了贝叶斯潜在类别分析 (LCA),以解决 MRS 在儿童中的固有局限性。使用接受者操作特征曲线下的面积 (AUROC) 和敏感性和特异性的点估计值评估诊断性能。

结果

共有 724 名儿童纳入分析,其中 58 名 (8%) 患有确诊 TB,145 名 (20%) 患有未确诊 TB,521 名 (72%) 患有不太可能 TB。使用 MRS,CAD4TBv7 的 AUROC 为 0.70(95%CI 0.60-0.79),显示敏感性和特异性分别为 19.0%(95%CI 11-31%)和 99.0%(95%CI 98.0-100.0%)。应用假设测试之间有条件独立性的贝叶斯 LCA,CAD4TBv7 的敏感性和特异性估计值分别为 42.7%(95%CrI 29.2-57.5%)和 97.9%(95%CrI 96.6-98.8%)。当允许培养和 Xpert 检测之间存在条件依赖性时,CAD4TBv7 表现出 50.3%(95%CrI 32.9-70.0%)的敏感性和 98.0%(95%CrI 96.7-98.9%)的特异性。

结论

尽管 CAD4TBv7 表现出较高的特异性,但敏感性不理想,这突出表明迫切需要对 CAD4TBv7 进行优化,以检测儿童中的结核病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d373/11540982/bcb149173b87/ERJ-00811-2024.GA01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验