McLeod Matthew J, Barwell Sarah A E, Holyoak Todd, Thorne Robert Edward
Cornell University, Ithaca New York, USA. Department of Physics.
University of Waterloo, Waterloo Ontario, Canada. Department of Biology.
bioRxiv. 2024 Aug 23:2024.08.23.609221. doi: 10.1101/2024.08.23.609221.
Enzymes are biomolecular catalysts whose activity varies with temperature. Unlike for small-molecule catalysts, the structural ensembles of enzymes can vary substantially with temperature, and it is in general unclear how this modulates the temperature dependence of activity. Here multi-temperature X-ray crystallography was used to record structural changes from -20°C to 40°C for a mesophilic enzyme in complex with inhibitors mimicking substrate-, intermediate-, and product-bound states, representative of major complexes underlying the kinetic constant . Both inhibitors, substrates and catalytically relevant loop motifs increasingly populate catalytically competent conformations as temperature increases. These changes occur even in temperature ranges where kinetic measurements show roughly linear Arrhenius/Eyring behavior where parameters characterizing the system are assumed to be temperature independent. Simple analysis shows that linear Arrhenius/Eyring behavior can still be observed when the underlying activation energy / enthalpy values vary with temperature, e.g., due to structural changes, and that the underlying thermodynamic parameters can be far from values derived from Arrhenius/Eyring model fits. Our results indicate a critical role for temperature-dependent atomic-resolution structural data in interpreting temperature-dependent kinetic data from enzymatic systems.
酶是生物分子催化剂,其活性随温度变化。与小分子催化剂不同,酶的结构集合体可随温度发生显著变化,而且一般而言,尚不清楚这是如何调节活性的温度依赖性的。在此,利用多温度X射线晶体学记录了一种嗜温酶与模拟底物、中间体和产物结合状态的抑制剂形成复合物时,在-20°C至40°C范围内的结构变化,这些状态代表了动力学常数背后的主要复合物。随着温度升高,抑制剂、底物和与催化相关的环基序越来越多地占据催化活性构象。即使在动力学测量显示大致呈线性阿伦尼乌斯/艾林行为的温度范围内,这些变化也会发生,在该温度范围内,表征系统的参数被假定为与温度无关。简单分析表明,当潜在的活化能/焓值随温度变化时,例如由于结构变化,仍可观察到线性阿伦尼乌斯/艾林行为,而且潜在的热力学参数可能与从阿伦尼乌斯/艾林模型拟合得出的值相差甚远。我们的结果表明,温度依赖性原子分辨率结构数据在解释酶系统的温度依赖性动力学数据方面起着关键作用。