Department of Biochemistry, Stanford University, Stanford, CA 94305;
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33204-33215. doi: 10.1073/pnas.2011350117. Epub 2020 Dec 21.
How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.
酶如何实现其巨大的速率增强仍然是生物学中的一个核心问题,迄今为止,我们的理解已经影响了药物开发、影响了酶的设计,并加深了我们对进化过程的认识。虽然酶将催化和反应基团定位在活性部位,但物理学要求原子不断运动。许多建议将定位或运动作为酶功能的核心,但由于缺乏实验数据,我们对定位和运动、它们的相对重要性以及它们在酶反应循环中的变化的理解受到了限制。为了研究定位和运动以及检验催化建议,我们收集了酮甾体异构酶(KSI)的“室温”X 射线晶体学数据,并从多个 PDB 晶体结构中获得了该酶和同源 KSI 的构象集合。集合分析表明,KSI 的反应循环中变化有限。活性部位的定位在 1 到 1.5Å 的范围内,与非催化基团相比并没有特别之处。KSI 集合为反对催化建议提供了证据,这些建议认为氧阴离子孔在基态和过渡态之间具有几何区分,或者高度精确的广义碱基定位。相反,增加或减少 KSI 的广义碱基的定位会降低催化作用,这表明优化的Ångstrom 尺度构象异质性允许 KSI 有效地催化多个反应步骤。WT 和突变 KSI 周围基团的集合分析提供了有关允许和限制活性部位运动的力和相互作用的见解。最普遍的是,这种集合观点扩展了传统的结构-功能关系,为“集合-功能”对酶的新研究时代提供了基础。