Suppr超能文献

正畸治疗结果预测性能的人工智能与传统方法比较。

Orthodontic treatment outcome predictive performance differences between artificial intelligence and conventional methods.

出版信息

Angle Orthod. 2024 Sep 1;94(5):557-565. doi: 10.2319/111823-767.1.

Abstract

OBJECTIVES

To evaluate an artificial intelligence (AI) model in predicting soft tissue and alveolar bone changes following orthodontic treatment and compare the predictive performance of the AI model with conventional prediction models.

MATERIALS AND METHODS

A total of 1774 lateral cephalograms of 887 adult patients who had undergone orthodontic treatment were collected. Patients who had orthognathic surgery were excluded. On each cephalogram, 78 landmarks were detected using PIPNet-based AI. Prediction models consisted of 132 predictor variables and 88 outcome variables. Predictor variables were demographics (age, sex), clinical (treatment time, premolar extraction), and Cartesian coordinates of the 64 anatomic landmarks. Outcome variables were Cartesian coordinates of the 22 soft tissue and 22 hard tissue landmarks after orthodontic treatment. The AI prediction model was based on the TabNet deep neural network. Two conventional statistical methods, multivariate multiple linear regression (MMLR) and partial least squares regression (PLSR), were each implemented for comparison. Prediction accuracy among the methods was compared.

RESULTS

Overall, MMLR demonstrated the most accurate results, while AI was least accurate. AI showed superior predictions in only 5 of the 44 anatomic landmarks, all of which were soft tissue landmarks inferior to menton to the terminal point of the neck.

CONCLUSIONS

When predicting changes following orthodontic treatment, AI was not as effective as conventional statistical methods. However, AI had an outstanding advantage in predicting soft tissue landmarks with substantial variability. Overall, results may indicate the need for a hybrid prediction model that combines conventional and AI methods.

摘要

目的

评估一种人工智能(AI)模型在预测正畸治疗后软组织和牙槽骨变化方面的能力,并比较 AI 模型与传统预测模型的预测性能。

材料和方法

共收集了 887 名成年正畸患者的 1774 侧头颅侧位片。排除接受正颌手术的患者。在每张头颅侧位片上,使用基于 PIPNet 的 AI 检测了 78 个标志点。预测模型包含 132 个预测变量和 88 个结果变量。预测变量包括人口统计学特征(年龄、性别)、临床特征(治疗时间、前磨牙拔除)和 64 个解剖标志点的笛卡尔坐标。结果变量为正畸治疗后 22 个软组织和 22 个硬组织标志点的笛卡尔坐标。AI 预测模型基于 TabNet 深度神经网络。为了比较,还分别实施了两种传统的统计方法,多元线性回归(MMLR)和偏最小二乘回归(PLSR)。比较了这些方法的预测准确性。

结果

总体而言,MMLR 显示出最准确的结果,而 AI 的准确性最低。AI 仅在 44 个解剖标志点中的 5 个方面表现出较好的预测结果,这 5 个标志点均为软组织标志点,位于颏下点至颈端点之间。

结论

在预测正畸治疗后的变化时,AI 不如传统的统计方法有效。然而,AI 在预测具有较大变异性的软组织标志点方面具有显著优势。总体而言,结果可能表明需要一种结合传统和 AI 方法的混合预测模型。

相似文献

9
Automated identification of cephalometric landmarks:自动识别头影测量标志点:
Angle Orthod. 2020 Jan;90(1):69-76. doi: 10.2319/022019-129.1. Epub 2019 Jul 22.

本文引用的文献

3
Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes.基于深度学习的正畸后面部三维变化预测。
J Dent Res. 2022 Oct;101(11):1372-1379. doi: 10.1177/00220345221106676. Epub 2022 Jun 30.
9
Automated identification of cephalometric landmarks:自动识别头影测量标志点:
Angle Orthod. 2020 Jan;90(1):69-76. doi: 10.2319/022019-129.1. Epub 2019 Jul 22.
10
Automated identification of cephalometric landmarks: .自动识别头影测量标志点:.
Angle Orthod. 2019 Nov;89(6):903-909. doi: 10.2319/022019-127.1. Epub 2019 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验