Suppr超能文献

自动叠加法在计算机辅助头影测量中的评价。

Evaluation of an automated superimposition method for computer-aided cephalometrics.

出版信息

Angle Orthod. 2020 May 1;90(3):390-396. doi: 10.2319/071319-469.1.

Abstract

OBJECTIVES

To evaluate a new superimposition method compatible with computer-aided cephalometrics and to compare superimposition error to that of the conventional Sella-Nasion (SN) superimposition method.

MATERIALS AND METHODS

A total of 283 lateral cephalometric radiographs were collected and cephalometric landmark identification was performed twice by the same examiner at a 3-month interval. The second tracing was superimposed on the first tracing by both the SN superimposition method and the new, proposed method. The proposed method not only relied on SN landmarks but also minimized the differences between four additional landmarks: Porion, Orbitale, Basion, and Pterygoid. The errors between the landmarks of the duplicate tracings oriented by the two superimposition methods were calculated at Anterior Nasal Spine, Point A, Point B, Pogonion, and Gonion. The paired t-test was used to find any statistical difference in the superimposition errors by the two superimposition methods and to investigate whether there existed clinically significant differences between the two methods.

RESULTS

The proposed method demonstrated smaller superimposition errors than did the conventional SN superimposition method. When comparisons between the two superimposition methods were made with a 1-mm error range, there were clinically significant differences between them.

CONCLUSIONS

The proposed method that was compatible with computer-aided cephalometrics might be a reliable superimposition method for superimposing serial cephalometric images.

摘要

目的

评估一种与计算机辅助头影测量兼容的新叠加方法,并将其与传统 Sella-Nasion(SN)叠加方法的叠加误差进行比较。

材料与方法

共收集了 283 张侧位头颅侧位片,由同一位检查者在 3 个月的间隔内进行了两次头颅解剖标志识别。第二次描记通过 SN 叠加方法和新提出的方法分别叠加在第一次描记上。新方法不仅依赖于 SN 标志点,还最小化了另外四个标志点(Porion、Orbitale、Basion 和 Pterygoid)之间的差异。通过两种叠加方法将重复描记的标志点定向,计算出在前鼻棘、A 点、B 点、颏顶点和下颌角点的标志点之间的误差。采用配对 t 检验来比较两种叠加方法的叠加误差是否存在统计学差异,并探讨两种方法之间是否存在临床显著差异。

结果

与传统 SN 叠加方法相比,新方法的叠加误差更小。当以 1mm 的误差范围对两种叠加方法进行比较时,它们之间存在临床显著差异。

结论

与计算机辅助头影测量兼容的新方法可能是一种可靠的叠加方法,用于叠加连续的头颅侧位片。

相似文献

1
Evaluation of an automated superimposition method for computer-aided cephalometrics.
Angle Orthod. 2020 May 1;90(3):390-396. doi: 10.2319/071319-469.1.
2
The accuracy of cephalometric tracing superimposition.
J Oral Maxillofac Surg. 2006 Feb;64(2):194-202. doi: 10.1016/j.joms.2005.10.028.
4
A Superimposition-Based Cephalometric Method to Quantitate Craniofacial Changes.
Int J Environ Res Public Health. 2021 May 14;18(10):5260. doi: 10.3390/ijerph18105260.
5
Cephalometric superimposition on the cranial base: a review and a comparison of four methods.
Am J Orthod Dentofacial Orthop. 1987 May;91(5):403-13. doi: 10.1016/0889-5406(87)90393-3.
7
Comparison of AudaxCeph®'s fully automated cephalometric tracing technology to a semi-automated approach by human examiners.
Int Orthod. 2022 Dec;20(4):100691. doi: 10.1016/j.ortho.2022.100691. Epub 2022 Sep 14.
8
Reliability of cephalometric landmark identification on three-dimensional computed tomographic images.
Br J Oral Maxillofac Surg. 2022 Apr;60(3):320-325. doi: 10.1016/j.bjoms.2021.07.003. Epub 2021 Jul 17.
10
Radiographic evaluation of orthodontic treatment by means of four different cephalometric superimposition methods.
Dental Press J Orthod. 2015 May-Jun;20(3):29-36. doi: 10.1590/2176-9451.20.3.029-036.oar.

引用本文的文献

1
Evaluation of an Automatic Cephalometric Superimposition Method Based on Feature Matching.
J Imaging Inform Med. 2025 Feb 25. doi: 10.1007/s10278-025-01447-0.
10

本文引用的文献

1
Automated identification of cephalometric landmarks:
Angle Orthod. 2020 Jan;90(1):69-76. doi: 10.2319/022019-129.1. Epub 2019 Jul 22.
2
Automated identification of cephalometric landmarks: .
Angle Orthod. 2019 Nov;89(6):903-909. doi: 10.2319/022019-127.1. Epub 2019 Jul 8.
3
Concurrent validity and reliability of cephalometric analysis using smartphone apps and computer software.
Angle Orthod. 2019 Nov;89(6):889-896. doi: 10.2319/021919-124.1. Epub 2019 Jul 8.
4
Predicting soft tissue changes after orthognathic surgery: .
Angle Orthod. 2019 Nov;89(6):910-916. doi: 10.2319/120518-851.1. Epub 2019 May 31.
5
A sparse principal component analysis of Class III malocclusions.
Angle Orthod. 2019 Sep;89(5):768-774. doi: 10.2319/100518-717.1. Epub 2019 Mar 21.
6
Accuracy of a smartphone-based orthodontic treatment-monitoring application: .
Angle Orthod. 2019 Sep;89(5):727-733. doi: 10.2319/100218-710.1. Epub 2019 Mar 19.
7
How to test validity in orthodontic research: a mixed dentition analysis example.
Am J Orthod Dentofacial Orthop. 2015 Feb;147(2):272-9. doi: 10.1016/j.ajodo.2014.09.021.
8
A more accurate soft-tissue prediction model for Class III 2-jaw surgeries.
Am J Orthod Dentofacial Orthop. 2014 Dec;146(6):724-33. doi: 10.1016/j.ajodo.2014.08.010.
10
A better statistical method of predicting postsurgery soft tissue response in Class II patients.
Angle Orthod. 2014 Mar;84(2):322-8. doi: 10.2319/050313-338.1. Epub 2013 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验