Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil.
Mol Biol Rep. 2024 Sep 4;51(1):957. doi: 10.1007/s11033-024-09871-1.
Recent studies have revealed atypical features in the plastomes of the family Cactaceae, the largest lineage of succulent species adapted to arid and semi-arid regions. Most plastomes sequenced to date are from short-globose and cylindrical cacti, while little is known about plastomes of epiphytic cacti. Published cactus plastomes reveal reduction and complete loss of IRs, loss of genes, pseudogenization, and even degeneration of tRNA structures. Aiming to contribute with new insights into the plastid evolution of Cactaceae, particularly within the tribe Rhipsalideae, we de novo assembled and analyzed the plastomes of Lepismium cruciforme and Schlumbergera truncata, two South American epiphytic cacti.
Our data reveal many gene losses in both plastomes and the first loss of functionality of the trnT-GGU gene in Cactaceae. The trnT-GGU is a pseudogene in L. cruciforme plastome and appears to be degenerating in the tribe Rhipsalideae. Although the plastome structure is conserved among the species of the tribe Rhipsalideae, with tribe-specific rearrangements, we mapped around 200 simple sequence repeats and identified nine nucleotide polymorphism hotspots, useful to improve the phylogenetic resolutions of the Rhipsalideae. Furthermore, our analysis indicated high gene divergence and rapid evolution of RNA editing sites in plastid protein-coding genes in Cactaceae.
Our findings show that some characteristics of the Rhipsalideae tribe are conserved, such as plastome structure with IRs containing only the ycf2 and two tRNA genes, structural degeneration of the trnT-GGU gene and ndh complex, and lastly, pseudogenization of rpl33 and rpl23 genes, both plastid translation-related genes.
最近的研究揭示了仙人掌科(Cactaceae)植物叶绿体基因组(plastome)的非典型特征,仙人掌科是适应干旱和半干旱地区的肉质植物中最大的谱系。迄今为止测序的大多数质体基因组来自短球形和圆柱形仙人掌,而关于附生仙人掌的质体基因组知之甚少。已发表的仙人掌质体基因组揭示了 IRs 的减少和完全缺失、基因丢失、假基因化,甚至 tRNA 结构的退化。为了深入了解仙人掌科质体的进化,特别是在 Rhipsalideae 族内,我们从头组装并分析了两种来自南美的附生仙人掌 Lepismium cruciforme 和 Schlumbergera truncata 的质体基因组。
我们的数据显示,这两个质体基因组中存在许多基因丢失,并且是 Cactaceae 中 trnT-GGU 基因首次失去功能。trnT-GGU 在 L. cruciforme 质体基因组中是一个假基因,并且似乎在 Rhipsalideae 族中正在退化。尽管 Rhipsalideae 族内的物种质体基因组结构保守,具有族特异性重排,但我们映射了大约 200 个简单重复序列,并鉴定了 9 个核苷酸多态性热点,这对提高 Rhipsalideae 的系统发育分辨率很有用。此外,我们的分析表明,Cactaceae 质体蛋白编码基因中的 RNA 编辑位点具有高度的基因分化和快速进化。
我们的研究结果表明,Rhipsalideae 族的一些特征是保守的,例如质体基因组结构带有仅包含 ycf2 和两个 tRNA 基因的 IRs、trnT-GGU 基因和 ndh 复合物的结构退化以及最后,与质体翻译相关的 rpl33 和 rpl23 基因的假基因化。