Tertuliano Ottman A, DePond Philip J, Lee Andrew C, Hong Jiho, Doan David, Capaldi Luc, Brongersma Mark, Gu X Wendy, Matthews Manyalibo J, Cai Wei, Lew Adrian J
Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 S. 33rd St., Philadelphia, PA 19104, USA.
Mechanical Engineering, Stanford University, 452 Escondido Mall, Stanford, CA 94305, USA.
Sci Adv. 2024 Sep 6;10(36):eadp0003. doi: 10.1126/sciadv.adp0003. Epub 2024 Sep 4.
The widespread application of metal additive manufacturing (AM) is limited by the ability to control the complex interactions between the energy source and the feedstock material. Here, we develop a generalizable process to introduce nanoscale grooves to the surface of metal powders which increases the powder absorptivity by up to 70% during laser powder bed fusion. Absorptivity enhancements in copper, copper-silver, and tungsten enable energy-efficient manufacturing, with printing of pure copper at relative densities up to 92% using laser energy densities as low as 83 joules per cubic millimeter. Simulations show that the enhanced powder absorptivity results from plasmon-enabled light concentration in nanoscale grooves combined with multiple scattering events. The approach taken here demonstrates a general method to enhance the absorptivity and printability of reflective and refractory metal powders by changing the surface morphology of the feedstock without altering its composition.
金属增材制造(AM)的广泛应用受到控制能源与原料之间复杂相互作用能力的限制。在此,我们开发了一种可推广的工艺,在金属粉末表面引入纳米级凹槽,这在激光粉末床熔融过程中将粉末吸收率提高了70%。铜、铜银合金和钨的吸收率提高实现了节能制造,使用低至每立方毫米83焦耳的激光能量密度,可打印出相对密度高达92%的纯铜。模拟结果表明,粉末吸收率的提高源于纳米级凹槽中由等离子体激发的光集中以及多次散射事件。这里采用的方法展示了一种通用方法,即通过改变原料的表面形态而不改变其成分来提高反射性和难熔金属粉末的吸收率和可打印性。