Center of Excellence for Innovation and Endoscopy in Gastrointestinal Oncology, Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Sci Rep. 2024 Sep 4;14(1):20617. doi: 10.1038/s41598-024-71657-z.
The effectiveness of ultrasonography (USG) in liver cancer screening is partly constrained by the operator's expertise. We aimed to develop and evaluate an AI-assisted system for detecting and classifying focal liver lesions (FLLs) from USG images. This retrospective study incorporated 26,288 USG images from 5444 patients to train YOLOv5 model for FLLs detection and classification of seven different types of FLLs, including hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), focal fatty infiltration, focal fatty sparing (FFS), cyst, hemangioma, and regenerative nodules. AI model performance was assessed for detection and diagnosis of the FLLs on a per-image and per-lesion basis. The AI achieved an overall FLLs detection rate of 84.8% (95%CI:83.3-86.4), with consistent performance for FLLs ≤ 1 cm and > 1 cm. It also exhibited sensitivity and specificity for distinguishing malignant FLLs from other benign FLLs at 97.0% (95%CI:95. 9-98.2) and 97.0% (95%CI:95.9-98.1), respectively. Among specific FLL types, CCA detection rate was at 92.2% (95%CI:88.0-96.4), followed by FFS at 89.7% (95%CI:87.1-92.3), and HCC at 82.3% (95%CI:77.1-87.5). The specificities and NPVs for regenerative nodules were 100% and 99.9% (95%CI:99.8-100.0), respectively. Our AI model can potentially assist physicians in FLLs detection and diagnosis during USG examinations. Further external validation is needed for clinical application.
超声检查(USG)在肝癌筛查中的有效性部分受到操作人员专业知识的限制。我们旨在开发和评估一种人工智能辅助系统,用于从 USG 图像中检测和分类局灶性肝病变(FLL)。这项回顾性研究纳入了 5444 名患者的 26288 张 USG 图像,用于训练 YOLOv5 模型以检测 FLL 并对七种不同类型的 FLL 进行分类,包括肝细胞癌(HCC)、胆管细胞癌(CCA)、局灶性脂肪浸润、局灶性脂肪保留(FFS)、囊肿、血管瘤和再生结节。基于图像和病变对 AI 模型的 FLL 检测和诊断性能进行评估。该 AI 在 FLL 检测方面的总体检测率为 84.8%(95%CI:83.3-86.4),对于≤1cm 和>1cm 的 FLL 具有一致的性能。它在区分恶性 FLL 与其他良性 FLL 方面的灵敏度和特异性分别为 97.0%(95%CI:95.9-98.2)和 97.0%(95%CI:95.9-98.1)。在特定的 FLL 类型中,CCA 的检测率为 92.2%(95%CI:88.0-96.4),其次是 FFS 为 89.7%(95%CI:87.1-92.3),HCC 为 82.3%(95%CI:77.1-87.5)。再生结节的特异性和 NPV 分别为 100%和 99.9%(95%CI:99.8-100.0)。我们的 AI 模型可以在 USG 检查期间协助医生检测和诊断 FLL。还需要进一步的外部验证才能用于临床应用。