Suppr超能文献

Ig-VAE:通过直接 3D 坐标生成对蛋白质结构进行生成式建模。

Ig-VAE: Generative modeling of protein structure by direct 3D coordinate generation.

机构信息

Department of Biochemistry, Stanford University, Stanford, California, United States of America.

Department of Statistics, Stanford University, Stanford, California, United States of America.

出版信息

PLoS Comput Biol. 2022 Jun 27;18(6):e1010271. doi: 10.1371/journal.pcbi.1010271. eCollection 2022 Jun.

Abstract

While deep learning models have seen increasing applications in protein science, few have been implemented for protein backbone generation-an important task in structure-based problems such as active site and interface design. We present a new approach to building class-specific backbones, using a variational auto-encoder to directly generate the 3D coordinates of immunoglobulins. Our model is torsion- and distance-aware, learns a high-resolution embedding of the dataset, and generates novel, high-quality structures compatible with existing design tools. We show that the Ig-VAE can be used with Rosetta to create a computational model of a SARS-CoV2-RBD binder via latent space sampling. We further demonstrate that the model's generative prior is a powerful tool for guiding computational protein design, motivating a new paradigm under which backbone design is solved as constrained optimization problem in the latent space of a generative model.

摘要

虽然深度学习模型在蛋白质科学中的应用越来越广泛,但很少有模型被用于生成蛋白质骨架——这是结构基础问题(如活性位点和界面设计)中的一项重要任务。我们提出了一种新的方法来构建特定类别的骨架,使用变分自动编码器直接生成免疫球蛋白的 3D 坐标。我们的模型是扭转和距离感知的,它学习了数据集的高分辨率嵌入,并生成了新颖的、高质量的结构,与现有的设计工具兼容。我们展示了 Ig-VAE 可以与 Rosetta 一起使用,通过潜在空间采样创建 SARS-CoV2-RBD 结合物的计算模型。我们进一步证明,该模型的生成先验是指导计算蛋白质设计的有力工具,这激发了一种新的范例,其中骨架设计作为生成模型潜在空间中的约束优化问题来解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0185/9269947/365c57a45946/pcbi.1010271.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验