Department of Biochemistry, Stanford University, Stanford, California, United States of America.
Department of Statistics, Stanford University, Stanford, California, United States of America.
PLoS Comput Biol. 2022 Jun 27;18(6):e1010271. doi: 10.1371/journal.pcbi.1010271. eCollection 2022 Jun.
While deep learning models have seen increasing applications in protein science, few have been implemented for protein backbone generation-an important task in structure-based problems such as active site and interface design. We present a new approach to building class-specific backbones, using a variational auto-encoder to directly generate the 3D coordinates of immunoglobulins. Our model is torsion- and distance-aware, learns a high-resolution embedding of the dataset, and generates novel, high-quality structures compatible with existing design tools. We show that the Ig-VAE can be used with Rosetta to create a computational model of a SARS-CoV2-RBD binder via latent space sampling. We further demonstrate that the model's generative prior is a powerful tool for guiding computational protein design, motivating a new paradigm under which backbone design is solved as constrained optimization problem in the latent space of a generative model.
虽然深度学习模型在蛋白质科学中的应用越来越广泛,但很少有模型被用于生成蛋白质骨架——这是结构基础问题(如活性位点和界面设计)中的一项重要任务。我们提出了一种新的方法来构建特定类别的骨架,使用变分自动编码器直接生成免疫球蛋白的 3D 坐标。我们的模型是扭转和距离感知的,它学习了数据集的高分辨率嵌入,并生成了新颖的、高质量的结构,与现有的设计工具兼容。我们展示了 Ig-VAE 可以与 Rosetta 一起使用,通过潜在空间采样创建 SARS-CoV2-RBD 结合物的计算模型。我们进一步证明,该模型的生成先验是指导计算蛋白质设计的有力工具,这激发了一种新的范例,其中骨架设计作为生成模型潜在空间中的约束优化问题来解决。