Suppr超能文献

使用现场人工智能分诊(FAIT)工具预测躯干枪伤患者的医院重症监护资源利用情况。

Using the Field Artificial Intelligence Triage (FAIT) tool to predict hospital critical care resource utilization in patients with truncal gunshot wounds.

机构信息

Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. Electronic address: https://twitter.com/OsaidesserMD.

Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. Electronic address: https://twitter.com/AnderDorken.

出版信息

Am J Surg. 2023 Aug;226(2):245-250. doi: 10.1016/j.amjsurg.2023.03.019. Epub 2023 Mar 17.

Abstract

BACKGROUND

Tiered trauma triage systems have resulted in a significant mortality reduction, but models have remained unchanged. The aim of this study was to develop and test an artificial intelligence algorithm to predict critical care resource utilization.

METHODS

We queried the ACS-TQIP 2017-18 database for truncal gunshot wounds(GSW). An information-aware deep neural network (DNN-IAD) model was trained to predict ICU admission and need for mechanical ventilation (MV). Input variables included demographics, comorbidities, vital signs, and external injuries. The model's performance was assessed using the area under receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC).

RESULTS

For the ICU admission analysis, we included 39,916 patients. For the MV need analysis, 39,591 patients were included. Median (IQR) age was 27 (22,36). AUROC and AUPRC for predicting ICU need were 84.8 ± 0.5 and 75.4 ± 0.5, and the AUROC and AUPRC for MV need were 86.8 ± 0.5 and 72.5 ± 0.6.

CONCLUSIONS

Our model predicts hospital utilization outcomes in patients with truncal GSW with high accuracy, allowing early resource mobilization and rapid triage decisions in hospitals with capacity issues and austere environments.

摘要

背景

分层创伤分诊系统已经显著降低了死亡率,但模型仍未改变。本研究旨在开发和测试一种人工智能算法来预测重症监护资源利用情况。

方法

我们查询了 ACS-TQIP 2017-18 数据库中的躯干枪伤(GSW)。训练了一种信息感知深度神经网络(DNN-IAD)模型,以预测 ICU 入院和需要机械通气(MV)的情况。输入变量包括人口统计学、合并症、生命体征和外部损伤。使用接收者操作特征曲线下的面积(AUROC)和精度-召回曲线下的面积(AUPRC)评估模型的性能。

结果

对于 ICU 入院分析,我们纳入了 39916 名患者。对于 MV 需要分析,纳入了 39591 名患者。中位数(IQR)年龄为 27(22,36)。预测 ICU 需求的 AUROC 和 AUPRC 分别为 84.8±0.5 和 75.4±0.5,预测 MV 需求的 AUROC 和 AUPRC 分别为 86.8±0.5 和 72.5±0.6。

结论

我们的模型对躯干 GSW 患者的医院利用结果预测具有很高的准确性,允许在容量有限和资源匮乏的医院中进行早期资源调动和快速分诊决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验