Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA;
Irving Institute for Cancer Dynamics, Columbia University, New York, New York 10027, USA.
Genome Res. 2024 Oct 11;34(9):1384-1396. doi: 10.1101/gr.279126.124.
Characterizing cell-cell communication and tracking its variability over time are crucial for understanding the coordination of biological processes mediating normal development, disease progression, and responses to perturbations such as therapies. Existing tools fail to capture time-dependent intercellular interactions and primarily rely on databases compiled from limited contexts. We introduce DIISCO, a Bayesian framework designed to characterize the temporal dynamics of cellular interactions using single-cell RNA-sequencing data from multiple time points. Our method utilizes structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their coevolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from T cells cocultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell cross talk.
描述细胞间的通讯,并跟踪其随时间的变化,对于理解介导正常发育、疾病进展以及对治疗等干扰的反应的生物过程的协调至关重要。现有的工具无法捕捉随时间变化的细胞间相互作用,主要依赖于从有限背景中编译的数据库。我们引入了 DIISCO,这是一个贝叶斯框架,旨在使用来自多个时间点的单细胞 RNA 测序数据来描述细胞间相互作用的时间动态。我们的方法利用结构化高斯过程回归根据它们的共同进化来揭示不同细胞类型之间的时变相互作用,并结合了受体配体复合物的先验知识。我们在模拟数据和从小鼠 T 细胞与淋巴瘤细胞共培养中收集的新数据中展示了 DIISCO 的可解释性,表明其具有揭示动态细胞间通讯的潜力。