Austin Peter C
ICES, Toronto, Ontario, Canada.
Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.
Pharm Stat. 2025 Jan-Feb;24(1):e2436. doi: 10.1002/pst.2436. Epub 2024 Sep 5.
A common feature in cohort studies is when there is a baseline measurement of the continuous follow-up or outcome variable. Common examples include baseline measurements of physiological characteristics such as blood pressure or heart rate in studies where the outcome is post-baseline measurement of the same variable. Methods incorporating the propensity score are increasingly being used to estimate the effects of treatments using observational studies. We examined six methods for incorporating the baseline value of the follow-up variable when using propensity score matching or weighting. These methods differed according to whether the baseline value of the follow-up variable was included or excluded from the propensity score model, whether subsequent regression adjustment was conducted in the matched or weighted sample to adjust for the baseline value of the follow-up variable, and whether the analysis estimated the effect of treatment on the follow-up variable or on the change from baseline. We used Monte Carlo simulations with 750 scenarios. While no analytic method had uniformly superior performance, we provide the following recommendations: first, when using weighting and the ATE is the target estimand, use an augmented inverse probability weighted estimator or include the baseline value of the follow-up variable in the propensity score model and subsequently adjust for the baseline value of the follow-up variable in a regression model. Second, when the ATT is the target estimand, regardless of whether using weighting or matching, analyze change from baseline using a propensity score that excludes the baseline value of the follow-up variable.
队列研究中的一个常见特征是对连续随访或结局变量进行基线测量。常见的例子包括在研究中对生理特征(如血压或心率)进行基线测量,而结局是对同一变量进行基线后测量。在观察性研究中,越来越多地使用纳入倾向得分的方法来估计治疗效果。我们研究了在使用倾向得分匹配或加权时纳入随访变量基线值的六种方法。这些方法的不同之处在于,倾向得分模型中是否包含随访变量的基线值,在匹配或加权样本中是否进行后续回归调整以校正随访变量的基线值,以及分析是估计治疗对随访变量的效果还是对基线变化的效果。我们使用蒙特卡洛模拟了750种情况。虽然没有一种分析方法具有一致的优越性能,但我们提供以下建议:第一,当使用加权且平均治疗效果(ATE)是目标估计量时,使用增强逆概率加权估计器,或在倾向得分模型中纳入随访变量的基线值,随后在回归模型中校正随访变量的基线值。第二,当平均治疗对治疗组效果(ATT)是目标估计量时,无论使用加权还是匹配,使用排除随访变量基线值的倾向得分分析基线变化。