Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria.
Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.
Theranostics. 2024 Aug 1;14(12):4570-4581. doi: 10.7150/thno.96921. eCollection 2024.
: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) accurately using a multiomics machine learning (ML) model and to compare its performance with biopsy-proven GG (bxGG) assessment. : A total of 146 patients with PCa recruited in a pilot study of a prospective clinical trial (NCT02659527) were retrospectively included in the side study, all of whom underwent Ga-PSMA-11 integrated positron emission tomography (PET) / magnetic resonance (MR) before radical prostatectomy (RP) between May 2014 and April 2020. To establish a multiomics ML model, we quantified PET radiomics features, pathway-level genomics features from whole exome sequencing, and pathomics features derived from immunohistochemical staining of 11 biomarkers. Based on the multiomics dataset, five ML models were established and validated using 100-fold Monte Carlo cross-validation. : Among five ML models, the random forest (RF) model performed best in terms of the area under the curve (AUC). Compared to bxGG assessment alone, the RF model was superior in terms of AUC (0.87 vs 0.75), specificity (0.72 vs 0.61), positive predictive value (0.79 vs 0.75), and accuracy (0.78 vs 0.77) and showed slightly decreased sensitivity (0.83 vs 0.89) and negative predictive value (0.80 vs 0.81). Among the feature categories, bxGG was identified as the most important feature, followed by pathomics, clinical, radiomics and genomics features. The three important individual features were bxGG, PSA staining and one intensity-related radiomics feature. : The findings demonstrate a superior assessment of the developed multiomics-based ML model in whole-mount GG compared to the current clinical baseline of bxGG. This enables personalized patient management by identifying high-risk PCa patients for RP.
这项研究旨在使用多组学生物学习 (ML) 模型准确评估前列腺癌 (PCa) 的全器官 Gleason 分级 (GG),并将其与活检证实的 GG (bxGG) 评估进行比较。本研究回顾性纳入了一项前瞻性临床试验 (NCT02659527) 的试点研究中招募的 146 名 PCa 患者,所有患者均于 2014 年 5 月至 2020 年 4 月期间在接受根治性前列腺切除术 (RP) 前接受 Ga-PSMA-11 整合正电子发射断层扫描 (PET)/磁共振 (MR)。为了建立多组学生物 ML 模型,我们对 11 种生物标志物的免疫组织化学染色的 PET 放射组学特征、全外显子测序的通路水平基因组学特征和 pathomics 特征进行了量化。基于多组学生物数据集,我们使用 100 倍蒙特卡罗交叉验证建立并验证了 5 个 ML 模型。在 5 个 ML 模型中,随机森林 (RF) 模型在曲线下面积 (AUC) 方面表现最佳。与单独的 bxGG 评估相比,RF 模型在 AUC(0.87 比 0.75)、特异性 (0.72 比 0.61)、阳性预测值 (0.79 比 0.75)和准确性 (0.78 比 0.77)方面具有优势,且敏感性 (0.83 比 0.89)和阴性预测值 (0.80 比 0.81)略有下降。在特征类别中,bxGG 被确定为最重要的特征,其次是 pathomics、临床、放射组学和基因组学特征。三个重要的个体特征是 bxGG、PSA 染色和一个与强度相关的放射组学特征。研究结果表明,与当前 bxGG 的临床基线相比,开发的基于多组学的 ML 模型在全器官 GG 评估方面具有更高的优势。这可以通过识别需要接受 RP 的高危 PCa 患者来实现患者的个性化管理。