Suppr超能文献

人工智能临床试验设计和实施中的伦理考虑。

Ethical Considerations in the Design and Conduct of Clinical Trials of Artificial Intelligence.

机构信息

Departments of Radiology, Stanford University School of Medicine, Stanford, California.

Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, California.

出版信息

JAMA Netw Open. 2024 Sep 3;7(9):e2432482. doi: 10.1001/jamanetworkopen.2024.32482.

Abstract

IMPORTANCE

Safe integration of artificial intelligence (AI) into clinical settings often requires randomized clinical trials (RCT) to compare AI efficacy with conventional care. Diabetic retinopathy (DR) screening is at the forefront of clinical AI applications, marked by the first US Food and Drug Administration (FDA) De Novo authorization for an autonomous AI for such use.

OBJECTIVE

To determine the generalizability of the 7 ethical research principles for clinical trials endorsed by the National Institute of Health (NIH), and identify ethical concerns unique to clinical trials of AI.

DESIGN, SETTING, AND PARTICIPANTS: This qualitative study included semistructured interviews conducted with 11 investigators engaged in the design and implementation of clinical trials of AI for DR screening from November 11, 2022, to February 20, 2023. The study was a collaboration with the ACCESS (AI for Children's Diabetic Eye Exams) trial, the first clinical trial of autonomous AI in pediatrics. Participant recruitment initially utilized purposeful sampling, and later expanded with snowball sampling. Study methodology for analysis combined a deductive approach to explore investigators' perspectives of the 7 ethical principles for clinical research endorsed by the NIH and an inductive approach to uncover the broader ethical considerations implementing clinical trials of AI within care delivery.

RESULTS

A total of 11 participants (mean [SD] age, 47.5 [12.0] years; 7 male [64%], 4 female [36%]; 3 Asian [27%], 8 White [73%]) were included, with diverse expertise in ethics, ophthalmology, translational medicine, biostatistics, and AI development. Key themes revealed several ethical challenges unique to clinical trials of AI. These themes included difficulties in measuring social value, establishing scientific validity, ensuring fair participant selection, evaluating risk-benefit ratios across various patient subgroups, and addressing the complexities inherent in the data use terms of informed consent.

CONCLUSIONS AND RELEVANCE

This qualitative study identified practical ethical challenges that investigators need to consider and negotiate when conducting AI clinical trials, exemplified by the DR screening use-case. These considerations call for further guidance on where to focus empirical and normative ethical efforts to best support conduct clinical trials of AI and minimize unintended harm to trial participants.

摘要

重要性

将人工智能(AI)安全地融入临床环境通常需要随机临床试验(RCT)来比较 AI 疗效与常规护理。糖尿病视网膜病变(DR)筛查处于临床 AI 应用的前沿,美国食品和药物管理局(FDA)首次为此类用途授权自主 AI,标志着这一领域的发展。

目的

确定美国国立卫生研究院(NIH)认可的临床试验 7 项伦理研究原则的普遍性,并确定临床试验 AI 特有的伦理问题。

设计、地点和参与者:这项定性研究包括对 11 名参与 DR 筛查 AI 临床试验设计和实施的研究者进行的半结构化访谈,时间为 2023 年 2 月 20 日。该研究与 ACCESS(儿童糖尿病眼病检查的 AI)试验合作,这是儿科自主 AI 的首次临床试验。参与者招募最初采用了有目的的抽样方法,随后通过滚雪球抽样进行了扩展。研究分析方法结合了演绎方法,以探索研究者对 NIH 认可的临床试验 7 项伦理原则的看法,以及归纳方法,以揭示在提供医疗服务的背景下实施 AI 临床试验的更广泛的伦理考虑因素。

结果

共纳入 11 名参与者(平均[标准差]年龄 47.5[12.0]岁;7 名男性[64%],4 名女性[36%];3 名亚洲人[27%],8 名白人[73%]),他们在伦理学、眼科学、转化医学、生物统计学和 AI 开发方面具有不同的专业知识。主要主题揭示了临床试验 AI 特有的一些伦理挑战。这些主题包括衡量社会价值、建立科学有效性、确保公平的参与者选择、评估不同患者亚组的风险-收益比,以及解决知情同意数据使用条款中固有的复杂性。

结论和相关性

这项定性研究确定了研究者在进行 AI 临床试验时需要考虑和协商的实际伦理挑战,DR 筛查用例就是一个例子。这些考虑因素需要进一步指导在何处集中精力进行实证和规范伦理努力,以最好地支持 AI 临床试验的开展,并最大程度地减少对试验参与者的意外伤害。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.人工智能将彻底改变炎症性肠病临床试验:全面综述。
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.

引用本文的文献

本文引用的文献

5
AI recognition of patient race in medical imaging: a modelling study.人工智能识别医学影像中的患者种族:一项建模研究。
Lancet Digit Health. 2022 Jun;4(6):e406-e414. doi: 10.1016/S2589-7500(22)00063-2. Epub 2022 May 11.
6
The medical algorithmic audit.医学算法审计
Lancet Digit Health. 2022 May;4(5):e384-e397. doi: 10.1016/S2589-7500(22)00003-6. Epub 2022 Apr 5.
8
AI in health and medicine.人工智能在医疗中的应用。
Nat Med. 2022 Jan;28(1):31-38. doi: 10.1038/s41591-021-01614-0. Epub 2022 Jan 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验