Suppr超能文献

利用机器学习技术对去脂体重、四肢瘦体重和四肢骨骼肌质量进行预测建模:利用 NHANES 数据和 LOOK AHEAD 研究进行的综合分析。

Predictive modeling of lean body mass, appendicular lean mass, and appendicular skeletal muscle mass using machine learning techniques: A comprehensive analysis utilizing NHANES data and the Look AHEAD study.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States of America.

出版信息

PLoS One. 2024 Sep 6;19(9):e0309830. doi: 10.1371/journal.pone.0309830. eCollection 2024.

Abstract

This study addresses the pressing need for improved methods to predict lean mass in adults, and in particular lean body mass (LBM), appendicular lean mass (ALM), and appendicular skeletal muscle mass (ASMM) for the early detection and management of sarcopenia, a condition characterized by muscle loss and dysfunction. Sarcopenia presents significant health risks, especially in populations with chronic diseases like cancer and the elderly. Current assessment methods, primarily relying on Dual-energy X-ray absorptiometry (DXA) scans, lack widespread applicability, hindering timely intervention. Leveraging machine learning techniques, this research aimed to develop and validate predictive models using data from the National Health and Nutrition Examination Survey (NHANES) and the Action for Health in Diabetes (Look AHEAD) study. The models were trained on anthropometric data, demographic factors, and DXA-derived metrics to accurately estimate LBM, ALM, and ASMM normalized to weight. Results demonstrated consistent performance across various machine learning algorithms, with LassoNet, a non-linear extension of the popular LASSO method, exhibiting superior predictive accuracy. Notably, the integration of bone mineral density measurements into the models had minimal impact on predictive accuracy, suggesting potential alternatives to DXA scans for lean mass assessment in the general population. Despite the robustness of the models, limitations include the absence of outcome measures and cohorts highly vulnerable to muscle mass loss. Nonetheless, these findings hold promise for revolutionizing lean mass assessment paradigms, offering implications for chronic disease management and personalized health interventions. Future research endeavors should focus on validating these models in diverse populations and addressing clinical complexities to enhance prediction accuracy and clinical utility in managing sarcopenia.

摘要

这项研究旨在满足当前对于改进成年人(特别是老年人和患有慢性病如癌症的人群)体脂量预测方法的迫切需求。体脂量减少和功能障碍是肌少症的特征,体脂量的减少会增加健康风险。肌少症的当前评估方法主要依赖双能 X 射线吸收法(DXA)扫描,但这种方法的应用范围有限,难以做到及时干预。本研究利用机器学习技术,利用来自国家健康和营养检查调查(NHANES)和糖尿病行动研究(Look AHEAD)的数据,开发并验证了预测模型。模型的训练数据来自人体测量数据、人口统计学因素和 DXA 衍生指标,用于准确估计体脂量、四肢瘦体重和四肢骨骼肌量与体重的比值。结果表明,各种机器学习算法的性能都较为一致,其中 LassoNet 作为流行的 LASSO 方法的非线性扩展,表现出了较高的预测准确性。值得注意的是,将骨密度测量值纳入模型对预测准确性的影响较小,这表明在普通人群中,DXA 扫描可能有替代方法用于体脂量评估。尽管这些模型具有稳健性,但仍存在一些局限性,例如缺乏结局指标以及肌肉量减少风险较高的队列。然而,这些发现为革新体脂量评估范式带来了希望,为慢性病管理和个性化健康干预提供了应用前景。未来的研究应致力于在不同人群中验证这些模型,并解决临床复杂性问题,以提高预测准确性和临床实用性,从而更好地管理肌少症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/043f/11379308/741b916da5f5/pone.0309830.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验