Suppr超能文献

使用生物信息学方法和机器学习算法识别中枢神经系统中精神分裂症的免疫相关生物标志物。

Identification of Immune-Related Biomarkers of Schizophrenia in the Central Nervous System Using Bioinformatic Methods and Machine Learning Algorithms.

作者信息

Weng Jianjun, Zhu Xiaoli, Ouyang Yu, Liu Yanqing, Lu Hongmei, Yao Jiakui, Pan Bo

机构信息

The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China.

Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225001, People's Republic of China.

出版信息

Mol Neurobiol. 2025 Mar;62(3):3226-3243. doi: 10.1007/s12035-024-04461-5. Epub 2024 Sep 7.

Abstract

Schizophrenia is a disastrous mental disorder. Identification of diagnostic biomarkers and therapeutic targets is of significant importance. In this study, five datasets of schizophrenia post-mortem prefrontal cortex samples were downloaded from the GEO database and then merged and de-batched for the analyses of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA). The WGCNA analysis showed the six schizophrenia-related modules containing 12,888 genes. The functional enrichment analyses indicated that the DEGs were highly involved in immune-related processes and functions. The immune cell infiltration analysis with the CIBERSORT algorithm revealed 12 types of immune cells that were significantly different between schizophrenia subjects and controls. Additionally, by intersecting DEGs, WGCNA module genes, and an immune gene set obtained from online databases, 151 schizophrenia-associated immune-related genes were obtained. Moreover, machine learning algorithms including LASSO and Random Forest were employed to further screen out 17 signature genes, including GRIN1, P2RX7, CYBB, PTPN4, UBR4, LTF, THBS1, PLXNB3, PLXNB1, PI15, RNF213, CXCL11, IL7, ARHGAP10, TTR, TYROBP, and EIF4A2. Then, SVM-RFE was added, and together with LASSO and Random Forest, a hub gene (EIF4A2) out of the 17 signature genes was revealed. Lastly, in a schizophrenia rat model, the EIF4A2 expression levels were reduced in the model rat brains in a brain-regional dependent manner, but can be reversed by risperidone. In conclusion, by using various bioinformatic and biological methods, this study found 17 immune-related signature genes and a hub gene of schizophrenia that might be potential diagnostic biomarkers and therapeutic targets of schizophrenia.

摘要

精神分裂症是一种灾难性的精神障碍。识别诊断生物标志物和治疗靶点具有重要意义。在本研究中,从基因表达综合数据库(GEO数据库)下载了五个精神分裂症死后前额叶皮质样本数据集,然后进行合并和去批次处理,以分析差异表达基因(DEGs)和加权基因共表达网络分析(WGCNA)。WGCNA分析显示了六个与精神分裂症相关的模块,包含12888个基因。功能富集分析表明,DEGs高度参与免疫相关过程和功能。使用CIBERSORT算法进行的免疫细胞浸润分析显示,精神分裂症患者和对照组之间有12种免疫细胞存在显著差异。此外,通过交叉分析DEGs、WGCNA模块基因以及从在线数据库获得的免疫基因集,获得了151个与精神分裂症相关的免疫相关基因。此外,采用包括套索回归(LASSO)和随机森林在内的机器学习算法进一步筛选出17个特征基因,包括GRIN1、P2RX7、CYBB、PTPN4、UBR4、LTF、THBS1、PLXNB3、PLXNB1、PI15、RNF213、CXCL11、IL7、ARHGAP10、TTR、TYROBP和EIF4A2。然后,加入支持向量机递归特征消除法(SVM-RFE),与LASSO和随机森林一起,从17个特征基因中揭示了一个核心基因(EIF4A2)。最后,在精神分裂症大鼠模型中,模型大鼠大脑中EIF4A2的表达水平以脑区依赖的方式降低,但可被利培酮逆转。总之,本研究通过使用各种生物信息学和生物学方法,发现了17个与精神分裂症相关的免疫特征基因和一个核心基因,它们可能是精神分裂症潜在的诊断生物标志物和治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验