Suppr超能文献

通过整合生物信息学分析和机器学习,在外周血单核细胞中鉴定心脏骤停后神经功能预后的预测因子。

Identification of predictors for neurological outcome after cardiac arrest in peripheral blood mononuclear cells through integrated bioinformatics analysis and machine learning.

机构信息

Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China.

Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical Collage, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China.

出版信息

Funct Integr Genomics. 2023 Mar 17;23(2):83. doi: 10.1007/s10142-023-01016-0.

Abstract

Neurological prognostication after cardiac arrest (CA) is important to avoid pursuing futile treatments for poor outcome and inappropriate withdrawal of life-sustaining treatment for good outcome. To predict neurological outcome after CA through biomarkers in peripheral blood mononuclear cells, four datasets were downloaded from the Gene Expression Omnibus database. GSE29546 and GSE74198 were used as training datasets, while GSE92696 and GSE34643 were used as verification datasets. The intersection of differentially expressed genes and hub genes from multiscale embedded gene co-expression network analysis (MEGENA) was utilized in the machine learning screening. Key genes were identified using support vector machine recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF). The results were validated using receiver operating characteristic curve analysis. An mRNA-miRNA network was constructed. The distribution of immune cells was evaluated using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). Five biomarkers were identified as predictors for neurological outcome after CA, with an area under the curve (AUC) greater than 0.7: CASP8 and FADD-like apoptosis regulator (CFLAR), human protein kinase X (PRKX), miR-483-5p, let-7a-5p, and let-7c-5p. Interestingly, the combination of CFLAR minus PRKX showed an even higher AUC of 0.814. The mRNA-miRNA network consisted of 30 nodes and 76 edges. Statistical differences were found in immune cell distribution, including neutrophils, NK cells active, NK cells resting, T cells CD4 memory activated, T cells CD4 memory resting, T cells CD8, B cells memory, and mast cells resting between individuals with good and poor neurological outcome after CA. In conclusion, our study identified novel predictors for neurological outcome after CA. Further clinical and laboratory studies are needed to validate our findings.

摘要

心脏骤停 (CA) 后的神经预后对于避免对预后不良的患者进行无效治疗以及对预后良好的患者不合理地停止生命支持治疗非常重要。为了通过外周血单核细胞中的生物标志物预测 CA 后的神经预后,从基因表达综合数据库中下载了四个数据集。GSE29546 和 GSE74198 被用作训练数据集,而 GSE92696 和 GSE34643 被用作验证数据集。通过多尺度嵌入基因共表达网络分析(MEGENA)的差异表达基因和枢纽基因的交集被用于机器学习筛选。使用支持向量机递归特征消除(SVM-RFE)、最小绝对收缩和选择算子(LASSO)逻辑回归和随机森林(RF)来识别关键基因。使用接收器操作特征曲线分析验证结果。构建了一个 mRNA-miRNA 网络。使用通过估计 RNA 转录物的相对子集来鉴定细胞类型(CIBERSORT)评估免疫细胞的分布。鉴定出 5 个作为 CA 后神经预后预测因子的生物标志物,其曲线下面积 (AUC) 大于 0.7:CASP8 和 FADD 样凋亡调节剂 (CFLAR)、人蛋白激酶 X (PRKX)、miR-483-5p、let-7a-5p 和 let-7c-5p。有趣的是,CFLAR 减去 PRKX 的组合 AUC 甚至更高,为 0.814。mRNA-miRNA 网络由 30 个节点和 76 个边组成。在 CA 后神经预后良好和预后不良的个体之间,免疫细胞分布存在统计学差异,包括中性粒细胞、NK 细胞活性、NK 细胞静止、T 细胞 CD4 记忆激活、T 细胞 CD4 记忆静止、T 细胞 CD8、B 细胞记忆和肥大细胞静止。总之,我们的研究确定了 CA 后神经预后的新预测因子。需要进一步的临床和实验室研究来验证我们的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f86/10023777/8efef0cdf22c/10142_2023_1016_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验