Suppr超能文献

人工选择可提高细菌群落对污染物的降解能力。

Artificial selection improves pollutant degradation by bacterial communities.

机构信息

BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany.

Département de Microbiologie Fondamentale, Université de Lausanne, 1015, Lausanne, Switzerland.

出版信息

Nat Commun. 2024 Sep 7;15(1):7836. doi: 10.1038/s41467-024-52190-z.

Abstract

Artificial selection is a promising way to improve microbial community functions, but previous experiments have only shown moderate success. Here, we experimentally evaluate a new method that was inspired by genetic algorithms to artificially select small bacterial communities of known species composition based on their degradation of an industrial pollutant. Starting from 29 randomly generated four-species communities, we repeatedly grew communities for four days, selected the 10 best-degrading communities, and rearranged them into 29 new communities composed of four species of equal ratios whose species compositions resembled those of the most successful communities from the previous round. The best community after 18 such rounds of selection degraded the pollutant better than the best community in the first round. It featured member species that degrade well, species that degrade badly alone but improve community degradation, and free-rider species that did not contribute to community degradation. Most species in the evolved communities did not differ significantly from their ancestors in their phenotype, suggesting that genetic evolution plays a small role at this time scale. These experiments show that artificial selection on microbial communities can work in principle, and inform on how to improve future experiments.

摘要

人工选择是一种很有前途的方法,可以改善微生物群落的功能,但之前的实验只取得了中等的成功。在这里,我们实验性地评估了一种新方法,该方法受到遗传算法的启发,根据它们对工业污染物的降解作用,人工选择已知物种组成的小型细菌群落。从 29 个随机生成的四物种群落开始,我们反复进行了四天的培养,选择了降解效果最好的 10 个群落,并将它们重新排列成 29 个新的群落,这些新群落由比例相等的四种物种组成,其物种组成与上一轮中最成功的群落相似。经过 18 轮这样的选择,最好的群落对污染物的降解效果优于第一轮的最佳群落。它具有成员物种降解效果好、单独降解效果差但能提高群落降解效果、以及没有为群落降解做出贡献的搭便车物种。在进化后的群落中,大多数物种的表型与它们的祖先没有显著差异,这表明遗传进化在这个时间尺度上的作用很小。这些实验表明,微生物群落的人工选择原则上是可行的,并为如何改进未来的实验提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf6e/11380672/48c4fc33b71e/41467_2024_52190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验