Zhang Xinjie, Liu Yuyang, Bao Yang, Zheng Zixiao, Mi Jian, Tang Yuxin, Zhang Qiwen, Oseyemi Ayobami Elisha
College of Mechanical and Electrical Engineering, Hohai University, Changzhou, 213200, China.
Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
Mikrochim Acta. 2024 Sep 9;191(10):583. doi: 10.1007/s00604-024-06654-0.
Recent advances in low-cost liquid crystal display (LCD) 3D printing have popularized its use in creating microfluidic master molds and complete devices. However, the quality and precision of these fabrications often fall short of the rigorous standards required for advanced microfluidic applications. This study introduces a novel approach to enhance the dimensional accuracy of microchannels produced using a desktop LCD 3D printer. We propose a method for dimension compensation, optimize the printing parameters, and provide a straightforward post-treatment technique to ensure high-quality curing of polydimethylsiloxane (PDMS) in master molds made from photosensitive resin. Our investigation assesses the precision of 3D printing across three different scales of square cross-section microchannels by measuring their widths and heights, leading to the determination of optimal printing parameters that minimize dimensional errors. The dimensional errors are further reduced by introducing a series of dimension compensation factors, which correct the nominal dimensions of the microchannels by using the compensation factors in 3D printing. The dimensional accuracy is significantly improved after compensation even in fabricating complex microchannels of triangular cross-sections. Finally, a spiral channel of trapezoidal-like cross-section with tilted edges is fabricated for microfluidic application, and highly efficient particle separation is realized in the channel. The proposed method provides new insights for utilizing desktop LCD 3D printers to achieve high-accuracy microstructures necessary for advanced microfluidic applications.
低成本液晶显示器(LCD)3D打印技术的最新进展使其在制造微流控母模和完整设备中的应用得到普及。然而,这些制造工艺的质量和精度往往达不到先进微流控应用所需的严格标准。本研究引入了一种新方法,以提高使用桌面LCD 3D打印机制造的微通道的尺寸精度。我们提出了一种尺寸补偿方法,优化了打印参数,并提供了一种简单的后处理技术,以确保由光敏树脂制成的母模中聚二甲基硅氧烷(PDMS)的高质量固化。我们的研究通过测量三种不同尺寸的方形横截面微通道的宽度和高度,评估了3D打印的精度,从而确定了使尺寸误差最小化的最佳打印参数。通过引入一系列尺寸补偿因子进一步降低了尺寸误差,这些因子在3D打印中使用补偿因子来校正微通道的标称尺寸。即使在制造三角形横截面的复杂微通道时,补偿后的尺寸精度也有显著提高。最后,制造了一个具有倾斜边缘的梯形横截面螺旋通道用于微流控应用,并在通道中实现了高效的颗粒分离。所提出的方法为利用桌面LCD 3D打印机实现先进微流控应用所需的高精度微结构提供了新的见解。