Suppr超能文献

城市物流中交通流优化的预测分析:一种基于Transformer的时间序列方法。

Predictive analytics for traffic flow optimization in urban logistics: A transformer-based time series approach.

作者信息

Tao Qingling

机构信息

School of Economics and Management, ShangQiu Institute of Technology, ShangQiu, China.

出版信息

Sci Prog. 2024 Jul-Sep;107(3):368504241265196. doi: 10.1177/00368504241265196.

Abstract

In this study, we focus on the analysis and prediction of urban logistics traffic flow, a field that is gaining increasing attention due to the acceleration of global urbanization and heightened environmental awareness. Existing forecasting methods face challenges in processing large and complex datasets, particularly when extracting and analyzing valid information from these data, often hindered by noise and outliers. In this context, time series analysis, as a key technique for predicting future trends, becomes crucial for supporting real-time traffic management and long-term traffic planning. To this end, we propose a composite network model that integrates gated recurrent unit (GRU), autoregressive integrated moving average (ARIMA), and temporal fusion transformer (TFT), namely the GRU-ARIMA-TFT network model, to enhance prediction accuracy and efficiency. Through the analysis of experimental results on different datasets, we demonstrate the significant advantages of this model in improving prediction accuracy and understanding complex traffic patterns. This research not only theoretically expands the boundaries of urban logistics traffic flow prediction but also holds substantial practical significance in real-world applications, especially in optimizing urban traffic planning and logistics distribution strategies during peak periods and under complex traffic conditions. Our study provides a robust tool for addressing real-world issues in the urban logistics domain and offers new perspectives and methodologies for future urban traffic management and logistics system planning.

摘要

在本研究中,我们专注于城市物流交通流的分析与预测,由于全球城市化加速以及环境意识增强,该领域正日益受到关注。现有的预测方法在处理大型复杂数据集时面临挑战,尤其是从这些数据中提取和分析有效信息时,常常受到噪声和异常值的阻碍。在此背景下,时间序列分析作为预测未来趋势的关键技术,对于支持实时交通管理和长期交通规划至关重要。为此,我们提出一种综合网络模型,该模型整合了门控循环单元(GRU)、自回归积分移动平均(ARIMA)和时间融合变压器(TFT),即GRU-ARIMA-TFT网络模型,以提高预测准确性和效率。通过对不同数据集的实验结果分析,我们证明了该模型在提高预测准确性和理解复杂交通模式方面的显著优势。本研究不仅在理论上拓展了城市物流交通流预测的边界,而且在实际应用中具有重要的现实意义,特别是在优化高峰时段和复杂交通条件下的城市交通规划和物流配送策略方面。我们的研究为解决城市物流领域的实际问题提供了一个强大的工具,并为未来城市交通管理和物流系统规划提供了新的视角和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57c1/11388311/c922092469da/10.1177_00368504241265196-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验