Suppr超能文献

在恒温与梯度加热条件下厌氧消化中提高氢气产量的微生物机制。

Microbial mechanisms for higher hydrogen production in anaerobic digestion at constant temperature versus gradient heating.

机构信息

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.

College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.

出版信息

Microbiome. 2024 Sep 10;12(1):170. doi: 10.1186/s40168-024-01908-8.

Abstract

BACKGROUND

Clean energy hydrogen (H) produced from abundant lignocellulose is an alternative to fossil energy. As an essential influencing factor, there is a lack of comparison between constant temperatures (35, 55 and 65 °C) and gradient heating temperature (35 to 65 °C) on the H production regulation potential from lignocellulose-rich straw via high-solid anaerobic digestion (HS-AD). More importantly, the microbial mechanism of temperature regulating H accumulation needs to be investigated.

RESULTS

Constant 65 °C led to the lowest lignin residue (1.93%) and the maximum release of cellulose and hemicellulose, and the highest H production (26.01 mL/g VS). H production at 35 and 55 °C was only 14.56 and 24.13 mL/g VS, respectively. In order to further explore the potential of ultra-high temperature (65 °C), HS-AD was performed by gradient heating conditions (35 to 65 °C). However, compared to constant 65 °C, gradient heating conditions led to higher lignin residue (2.49%) and lower H production (13.53 mL/g VS) than gradient heating conditions (47.98%). In addition, metagenomic analysis showed the cellulose/hemicellulose hydrolyzing bacteria and genes (mainly Thermoclostridium, and xynA, xynB, abfA, bglB and xynD), Hproducing bacteria and related genes (mainly Thermoclostridium, and nifD, nifH and nifK), and microbial movement and metabolic functions were enriched at 65 °C. However, the enrichment of two-component systems under gradient heating conditions resulted in a lack of highly-enriched ultra-high-temperature cellulose/hemicellulose hydrolyzing genera and related genes but rather enriched H consumption genera and genes (mainly Acetivibrio, and hyaB and hyaA) resulting in a weaker H production.

CONCLUSIONS

The lignin degradation process does not directly determine H accumulation, which was actually regulated by bacteria/genes contributing to H production/consumption. In addition, it is temperature that enhances the hydrolysis process of lignin rather than lignin-degrading enzymes, bacteria and genes by promoting microbial material transfer and metabolism. In terms of temperature, one of the key parameters of HS-AD for H production, we developed an important regulatory strategy, enriched the theoretical basis of temperature regulation for H production to further expanded the research horizon in this field. Video Abstract.

摘要

背景

从丰富的木质纤维素中生产清洁能源氢气是对化石能源的一种替代。作为一个重要的影响因素,在高固体厌氧消化(HS-AD)过程中,丰富的秸秆原料产氢过程中,恒温(35、55 和 65°C)和梯度升温(35 至 65°C)对产氢调节潜力的比较研究还很缺乏。更重要的是,需要研究温度调节 H 积累的微生物机制。

结果

恒温 65°C 导致木质素残余物最低(1.93%),纤维素和半纤维素释放最大,氢气产量最高(26.01mL/gVS)。35°C 和 55°C 时的氢气产量分别仅为 14.56 和 24.13mL/gVS。为了进一步探索超高温(65°C)的潜力,采用梯度升温条件(35 至 65°C)进行 HS-AD。然而,与恒温 65°C 相比,梯度升温条件导致木质素残余物较高(2.49%),氢气产量较低(13.53mL/gVS),低于梯度升温条件(47.98%)。此外,宏基因组分析表明,纤维素/半纤维素水解菌和基因(主要为 Thermoclostridium 和 xynA、xynB、abfA、bglB 和 xynD)、产氢菌和相关基因(主要为 Thermoclostridium 和 nifD、nifH 和 nifK)以及微生物运动和代谢功能在 65°C 时得到了富集。然而,梯度升温条件下的双组分系统的富集导致缺乏高度富集的超高温纤维素/半纤维素水解菌属和相关基因,而是富集了 H 消耗菌属和基因(主要为 Acetivibrio 和 hyaB 和 hyaA),导致产氢能力较弱。

结论

木质素降解过程并不直接决定 H 的积累,而是通过产氢/耗氢相关的细菌/基因进行调节。此外,增强微生物物质传递和代谢的是温度,而不是木质素降解酶、细菌和基因。就温度而言,这是 HS-AD 产生 H 的关键参数之一,我们制定了一个重要的调节策略,丰富了产氢温度调节的理论基础,进一步拓展了该领域的研究视野。视频摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede0/11386108/0e4bbeae10f7/40168_2024_1908_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验