Suppr超能文献

弱标签或无标签情况下的联邦异常心音检测

Federated Abnormal Heart Sound Detection with Weak to No Labels.

作者信息

Qiu Wanyong, Quan Chen, Yu Yongzi, Kara Eda, Qian Kun, Hu Bin, Schuller Björn W, Yamamoto Yoshiharu

机构信息

Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education (Beijing Institute of Technology), Beijing 100081, China.

School of Medical Technology and School of Computer Science, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Cyborg Bionic Syst. 2024 Sep 10;5:0152. doi: 10.34133/cbsystems.0152. eCollection 2024.

Abstract

Cardiovascular diseases are a prominent cause of mortality, emphasizing the need for early prevention and diagnosis. Utilizing artificial intelligence (AI) models, heart sound analysis emerges as a noninvasive and universally applicable approach for assessing cardiovascular health conditions. However, real-world medical data are dispersed across medical institutions, forming "data islands" due to data sharing limitations for security reasons. To this end, federated learning (FL) has been extensively employed in the medical field, which can effectively model across multiple institutions. Additionally, conventional supervised classification methods require fully labeled data classes, e.g., binary classification requires labeling of positive and negative samples. Nevertheless, the process of labeling healthcare data is time-consuming and labor-intensive, leading to the possibility of mislabeling negative samples. In this study, we validate an FL framework with a naive positive-unlabeled () learning strategy. Semisupervised FL model can directly learn from a limited set of positive samples and an extensive pool of unlabeled samples. Our emphasis is on vertical-FL to enhance collaboration across institutions with different medical record feature spaces. Additionally, our contribution extends to feature importance analysis, where we explore 6 methods and provide practical recommendations for detecting abnormal heart sounds. The study demonstrated an impressive accuracy of 84%, comparable to outcomes in supervised learning, thereby advancing the application of FL in abnormal heart sound detection.

摘要

心血管疾病是导致死亡的一个突出原因,这凸显了早期预防和诊断的必要性。利用人工智能(AI)模型,心音分析成为一种用于评估心血管健康状况的非侵入性且普遍适用的方法。然而,现实世界中的医疗数据分散在各个医疗机构中,由于安全原因导致数据共享受限,从而形成了“数据孤岛”。为此,联邦学习(FL)已在医疗领域中得到广泛应用,它可以跨多个机构有效地进行建模。此外,传统的监督分类方法需要完全标记的数据类别,例如,二元分类需要标记正样本和负样本。然而,标记医疗保健数据的过程既耗时又费力,导致存在将负样本误标记的可能性。在本研究中,我们验证了一个采用朴素正样本未标记()学习策略的联邦学习框架。半监督联邦学习模型可以直接从有限的正样本集和大量未标记样本中学习。我们重点关注纵向联邦学习,以加强跨具有不同病历特征空间的机构之间的协作。此外,我们的贡献还延伸到特征重要性分析,我们探索了6种方法,并为检测异常心音提供了实用建议。该研究展示了令人印象深刻的84%的准确率,与监督学习的结果相当,从而推动了联邦学习在异常心音检测中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/064d/11382922/988f16a634fb/cbsystems.0152.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验