Suppr超能文献

智能手机加速度计数据在急诊科出院后每周仪器计时起立行走测试期间测量的可行性:前瞻性观察队列研究。

Feasibility of Measuring Smartphone Accelerometry Data During a Weekly Instrumented Timed Up-and-Go Test After Emergency Department Discharge: Prospective Observational Cohort Study.

机构信息

Department of Emergency Medicine, Stanford University, 300 Porter Drive, Palo Alto, CA, 94020, United States, 1 650-723-6576, 1 650-723-0121.

出版信息

JMIR Aging. 2024 Sep 4;7:e57601. doi: 10.2196/57601.

Abstract

BACKGROUND

Older adults discharged from the emergency department (ED) face elevated risk of falls and functional decline. Smartphones might enable remote monitoring of mobility after ED discharge, yet their application in this context remains underexplored.

OBJECTIVE

This study aimed to assess the feasibility of having older adults provide weekly accelerometer data from an instrumented Timed Up-and-Go (TUG) test over an 11-week period after ED discharge.

METHODS

This single-center, prospective, observational, cohort study recruited patients aged 60 years and older from an academic ED. Participants downloaded the GaitMate app to their iPhones that recorded accelerometer data during 11 weekly at-home TUG tests. We measured adherence to TUG test completion, quality of transmitted accelerometer data, and participants' perceptions of the app's usability and safety.

RESULTS

Of the 617 approached patients, 149 (24.1%) consented to participate, and of these 149 participants, 9 (6%) dropped out. Overall, participants completed 55.6% (912/1639) of TUG tests. Data quality was optimal in 31.1% (508/1639) of TUG tests. At 3-month follow-up, 83.2% (99/119) of respondents found the app easy to use, and 95% (114/120) felt safe performing the tasks at home. Barriers to adherence included the need for assistance, technical issues with the app, and forgetfulness.

CONCLUSIONS

The study demonstrates moderate adherence yet high usability and safety for the use of smartphone TUG tests to monitor mobility among older adults after ED discharge. Incomplete TUG test data were common, reflecting challenges in the collection of high-quality longitudinal mobility data in older adults. Identified barriers highlight the need for improvements in user engagement and technology design.

摘要

背景

从急诊科(ED)出院的老年人面临更高的跌倒和功能下降风险。智能手机可以实现 ED 出院后移动性的远程监测,但在这方面的应用仍未得到充分探索。

目的

本研究旨在评估让老年人在 ED 出院后 11 周内每周提供带计步器的计时起立行走(TUG)测试的加速度计数据的可行性。

方法

这项单中心、前瞻性、观察性、队列研究招募了来自学术 ED 的 60 岁及以上的患者。参与者将 GaitMate 应用程序下载到他们的 iPhone 上,该程序在每周 11 次的家庭 TUG 测试中记录加速度计数据。我们测量了 TUG 测试完成的依从性、传输的加速度计数据的质量以及参与者对应用程序可用性和安全性的看法。

结果

在接触的 617 名患者中,有 149 名(24.1%)同意参与,其中 9 名(6%)患者脱落。总体而言,参与者完成了 55.6%(912/1639)的 TUG 测试。数据质量在 31.1%(508/1639)的 TUG 测试中是最佳的。在 3 个月的随访中,83.2%(99/119)的受访者认为该应用程序易于使用,95%(114/120)的受访者在家中执行任务感到安全。依从性的障碍包括需要帮助、应用程序的技术问题和健忘。

结论

该研究表明,使用智能手机 TUG 测试监测 ED 出院后老年人的移动性具有中等程度的依从性,同时具有高度的可用性和安全性。不完整的 TUG 测试数据很常见,这反映了在老年人中收集高质量纵向移动性数据的挑战。已识别的障碍突出了需要改进用户参与度和技术设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5f2/11440574/4c6a8530911f/aging-v7-e57601-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验