Suppr超能文献

混合多组结构方程建模:一种比较多组间结构关系的新方法。

Mixture multigroup structural equation modeling: A novel method for comparing structural relations across many groups.

作者信息

Perez Alonso Andres F, Rosseel Yves, Vermunt Jeroen K, De Roover Kim

机构信息

Department of Methodology and Statistics, Tilburg University.

Department of Data Analysis, Ghent University.

出版信息

Psychol Methods. 2024 Sep 12. doi: 10.1037/met0000667.

Abstract

Behavioral scientists often examine the relations between two or more latent variables (e.g., how emotions relate to life satisfaction), and structural equation modeling (SEM) is the state-of-the-art for doing so. When comparing these "structural relations" among many groups, they likely differ across the groups. However, it is equally likely that some groups share the same relations so that clusters of groups emerge. Latent variables are measured indirectly by questionnaires and, for validly comparing their relations among groups, the measurement of the latent variables should be invariant across the groups (i.e., measurement invariance). However, across many groups, often at least some measurement parameters differ. Restricting these measurement parameters to be invariant, when they are not, causes the structural relations to be estimated incorrectly and invalidates their comparison. We propose mixture multigroup SEM (MMG-SEM) to gather groups with equivalent structural relations in clusters while accounting for the reality of measurement noninvariance. Specifically, MMG-SEM obtains a clustering of groups focused on the structural relations by making them cluster-specific, while capturing measurement noninvariances with group-specific measurement parameters. In this way, MMG-SEM ensures that the clustering is valid and unaffected by differences in measurement. This article proposes an estimation procedure built around the R package "lavaan" and evaluates MMG-SEM's performance through two simulation studies. The results demonstrate that MMG-SEM successfully recovers the group-clustering as well as the cluster-specific relations and the partially group-specific measurement parameters. To illustrate its empirical value, we apply MMG-SEM to cross-cultural data on the relations between experienced emotions and life satisfaction. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

行为科学家经常研究两个或多个潜在变量之间的关系(例如,情绪与生活满意度之间的关系),而结构方程模型(SEM)是进行此类研究的先进方法。在比较多个群体之间的这些“结构关系”时,它们可能在不同群体中有所不同。然而,同样有可能的是,一些群体共享相同的关系,从而出现群体聚类。潜在变量通过问卷进行间接测量,为了有效地比较不同群体之间的关系,潜在变量的测量应该在各群体间具有不变性(即测量不变性)。然而,在许多群体中,通常至少有一些测量参数是不同的。当测量参数并非不变时却将其限制为不变,会导致结构关系被错误估计,并使它们的比较无效。我们提出了混合多组结构方程模型(MMG - SEM),以便在考虑测量非不变性现实的同时,将具有等效结构关系的群体聚集在一起。具体而言,MMG - SEM通过使结构关系具有特定群体特征来获得关注结构关系的群体聚类,同时用特定群体的测量参数捕捉测量非不变性。通过这种方式,MMG - SEM确保聚类是有效的,并且不受测量差异的影响。本文提出了一种围绕R包“lavaan”构建的估计程序,并通过两项模拟研究评估了MMG - SEM的性能。结果表明,MMG - SEM成功地恢复了群体聚类以及特定聚类的关系和部分特定群体的测量参数。为了说明其实际价值,我们将MMG - SEM应用于关于经历的情绪与生活满意度之间关系的跨文化数据。(PsycInfo数据库记录(c)2024美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验