Data Sciences and Quantitative Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.
Data Sciences and Quantitative Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States of America.
PLoS One. 2024 Sep 12;19(9):e0310433. doi: 10.1371/journal.pone.0310433. eCollection 2024.
Hit screening, which involves the identification of compounds or targets capable of modulating disease-relevant processes, is an important step in drug discovery. Some assays, such as image-based high-content screenings, produce complex multivariate readouts. To fully exploit the richness of such data, advanced analytical methods that go beyond the conventional univariate approaches should be employed. In this work, we tackle the problem of hit identification in multivariate assays. As with univariate assays, a hit from a multivariate assay can be defined as a candidate that yields an assay value sufficiently far away in distance from the mean or central value of inactives. Viewed another way, a hit is an outlier from the distribution of inactives. A method was developed for identifying multivariate hit in high-dimensional data sets based on principal components and robust Mahalanobis distance (the multivariate analogue to the Z- or T-statistic). The proposed method, termed mROUT (multivariate robust outlier detection), demonstrates superior performance over other techniques in the literature in terms of maintaining Type I error, false discovery rate and true discovery rate in simulation studies. The performance of mROUT is also illustrated on a CRISPR knockout data set from in-house phenotypic screening programme.
筛选是药物发现过程中的一个重要步骤,它涉及到识别能够调节与疾病相关过程的化合物或靶标。一些测定方法,如基于图像的高通量筛选,会产生复杂的多元读数。为了充分利用这些数据的丰富性,应该采用超越传统单变量方法的先进分析方法。在这项工作中,我们解决了多元测定中命中识别的问题。与单变量测定一样,多元测定中的命中可以定义为一个候选者,其测定值与无活性物质的平均值或中心值足够远。从另一个角度看,命中是无活性物质分布中的异常值。提出了一种基于主成分和稳健马氏距离(多元分析中的 Z 或 T 统计量)的高维数据集多元命中识别方法。所提出的方法称为 mROUT(多元稳健异常值检测),在模拟研究中,在保持 I 型错误、假发现率和真实发现率方面,其性能优于文献中的其他技术。mROUT 的性能也在内部表型筛选计划的 CRISPR 敲除数据集上得到了说明。