Suppr超能文献

一种比较绿色、三角洲和蒙特卡罗方法,以选择计算人群归因分数 95%置信区间的最佳方法的比较:对流行病学研究的指导。

A Comparison of Green, Delta, and Monte Carlo Methods to Select an Optimal Approach for Calculating the 95% Confidence Interval of the Population-attributable Fraction: Guidance for Epidemiological Research.

机构信息

Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.

Cancer Research Institute, Seoul National University, Seoul, Korea.

出版信息

J Prev Med Public Health. 2024 Sep;57(5):499-507. doi: 10.3961/jpmph.24.272. Epub 2024 Sep 6.

Abstract

OBJECTIVES

This study aimed to compare the Delta, Greenland, and Monte Carlo methods for estimating 95% confidence intervals (CIs) of the population-attributable fraction (PAF). The objectives were to identify the optimal method and to determine the influence of primary parameters on PAF calculations.

METHODS

A dataset was simulated using hypothetical values for primary parameters (population, relative risk [RR], prevalence, and variance of the beta estimator ) involved in PAF calculations. Three methods (Delta, Greenland, and Monte Carlo) were used to estimate the 95% CIs of the PAFs. Perturbation analysis was performed to assess the sensitivity of the PAF to changes in these parameters. An R Shiny application, the "GDM-PAF CI Explorer," was developed to facilitate the analysis and visualization of these computations.

RESULTS

No significant differences were observed among the 3 methods when both the RR and p-value were low. The Delta method performed well under conditions of low prevalence or minimal RR, while Greenland's method was effective in scenarios with high prevalence. Meanwhile, the Monte Carlo method calculated 95% CIs of PAFs that were stable overall, though it required intensive computational resources. In a novel approach that utilized perturbation for sensitivity analysis, was identified as the most influential parameter in the estimation of CIs.

CONCLUSIONS

This study emphasizes the necessity of a careful approach for comparing 95% CI estimation methods for PAFs and selecting the method that best suits the context. It provides practical guidelines to researchers to increase the reliability and accuracy of epidemiological studies.

摘要

目的

本研究旨在比较 Delta、Greenland 和 Monte Carlo 方法在估计人群归因分数(PAF)95%置信区间(CI)方面的表现。目的是确定最佳方法,并确定主要参数对 PAF 计算的影响。

方法

使用涉及 PAF 计算的主要参数(人群、相对风险[RR]、患病率和β估计量方差)的假设值模拟数据集。使用三种方法(Delta、Greenland 和 Monte Carlo)来估计 PAF 的 95%CI。进行扰动分析以评估 PAF 对这些参数变化的敏感性。开发了一个名为“GDM-PAF CI Explorer”的 R Shiny 应用程序,以方便这些计算的分析和可视化。

结果

当 RR 和 p 值均较低时,三种方法之间没有观察到显著差异。当 RR 低或患病率低时,Delta 方法表现良好,而 Greenland 方法在患病率高的情况下效果较好。同时,Monte Carlo 方法计算的 PAF 95%CI 总体上较为稳定,尽管需要密集的计算资源。在一种新颖的方法中,利用扰动进行敏感性分析,发现 RR 是影响 CI 估计的最主要参数。

结论

本研究强调了在比较 PAF 的 95%CI 估计方法时需要谨慎的方法,并选择最适合具体情况的方法。它为研究人员提供了实用的指南,以提高流行病学研究的可靠性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e94/11471335/e45185403adf/jpmph-24-272f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验