Ilyin Sergey O
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia.
Polymers (Basel). 2024 Aug 29;16(17):2458. doi: 10.3390/polym16172458.
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology-a valuable tool for the development and study of novel materials. This work summarizes the author's structural-rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties.
聚合物科学和纳米技术的进展产生了新的胶体和大分子物质及其组合,它们可被定义为复杂聚合物材料。其复杂性可能包括大分子链复杂的组成和结构、特定的分子间相互作用、异常的相行为以及含聚合物的多组分材料的结构。确定复杂材料的结构、其组成元素的结构与性质以及材料整体流变性质之间的关系,是结构流变学的研究主题——这是开发和研究新型材料的一项宝贵工具。这项工作总结了作者对复杂聚合物材料的结构流变学研究,以确定其微观和纳米结构的条件及流变表现。利用三嵌段和多嵌段苯乙烯/异戊二烯以及醋酸乙烯酯/乙烯醇共聚物,考虑了大分子链复杂的化学组成及其在熔体和溶液中通过嵌段分离和协同氢键在聚合物结构形成中的作用。分析了纤维素、其醋酸丁酸酯、明胶/角叉菜胶组合以及不同的丙烯腈、恶二唑和苯并咪唑共聚物溶液中的特定分子相互作用。均相结构形成可能源于构象转变、中间相形成或由复杂的链组成或特定的分子内和超分子相互作用引起的大分子缔合,然而,在确定流变行为时,这些可能会被大分子缠结所掩盖。非均相结构形成意味着在添加非溶剂、温度变化或强烈剪切直至宏观分解时发生微观相分离。使用聚环氧乙烷溶液、聚异丁烯熔体以及含有不同性质固体颗粒的纤维素凝胶,研究了特定的聚合物/颗粒相互作用,证明了大分子缠结、颗粒间相互作用以及吸附的聚合物/颗粒键在控制流变性质方面的竞争。利用长链支化聚丁二酸丁二醇酯-对苯二甲酸酯和聚乙烯熔体、交联透明质酸钠水凝胶、沥青质溶液以及线性/高度支化聚二甲基硅氧烷共混物,考虑了复杂的链结构,表明支化会提高粘度和弹性,并可能导致与线性同分异构体链的有限混溶性。最后,给出了一些复合粘合剂、膜和润滑脂作为结构化聚合物功能材料的例子,并展示了它们的流变性质与性能之间的关系。