Suppr超能文献

AA1050铝合金高温压缩过程中的亚晶粒尺寸建模与亚结构演变

Subgrain Size Modeling and Substructure Evolution in an AA1050 Aluminum Alloy during High-Temperature Compression.

作者信息

Yang Qi, Wojcik Tomasz, Kozeschnik Ernst

机构信息

Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.

出版信息

Materials (Basel). 2024 Sep 5;17(17):4385. doi: 10.3390/ma17174385.

Abstract

For materials with high stacking fault energy (SFE), such as aluminum alloys, dynamic recovery (DRV) and dynamic recrystallization (DRX) are essential softening mechanisms during plastic deformation, which lead to the continuous generation and refinement of newborn subgrains (2° ˂ misorientation angle ˂ 15°). The present work investigates the influence of compression parameters on the evolution of the substructures for a 1050 aluminum alloy at elevated temperatures. The alloy microstructure was investigated under deformation temperatures ranging from 300 °C to 500 °C and strain rates from 0.01 to 0.1 s, respectively. A well-defined substructure and subsequent subgrain refinement provided indication of the evolution laws of the substructure under high-temperature compression. Corresponding experimental data on the average subgrain size under various compression conditions were obtained. Two different independent average subgrain size evolution models (empirical and substructure-based) were used and applied with several internal state variables. The substructure model employed physical variables to simulate subgrain refinement and thermal coarsening during deformation, incorporating a corresponding dislocation density evolution model. The correlation coefficient () and root mean square error () of the substructure-based model were calculated to be 0.98 and 5.7%, respectively. These models can provide good estimates of the average subgrain size, with both predictions and experiments reproducing the expected subgrain size evolution using physically meaningful variables during continuous deformation.

摘要

对于具有高堆垛层错能(SFE)的材料,如铝合金,动态回复(DRV)和动态再结晶(DRX)是塑性变形过程中至关重要的软化机制,它们导致新生亚晶粒(2°<取向差角<15°)不断生成并细化。本工作研究了压缩参数对一种1050铝合金在高温下亚结构演变的影响。分别在300℃至500℃的变形温度和0.01至0.1s⁻¹的应变速率下对该合金的微观结构进行了研究。清晰的亚结构和随后的亚晶粒细化为高温压缩下亚结构的演变规律提供了指示。获得了各种压缩条件下平均亚晶粒尺寸的相应实验数据。使用了两种不同的独立平均亚晶粒尺寸演变模型(经验模型和基于亚结构的模型),并应用了几个内部状态变量。亚结构模型采用物理变量来模拟变形过程中的亚晶粒细化和热粗化,并结合了相应的位错密度演变模型。基于亚结构的模型的相关系数()和均方根误差()分别计算为0.98和5.7%。这些模型可以很好地估计平均亚晶粒尺寸,预测和实验都能在连续变形过程中使用具有物理意义的变量再现预期的亚晶粒尺寸演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c91/11396724/de079aaa402e/materials-17-04385-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验