Facultad de Odontología, Universidad Internacional de Cataluña, 08029 Barcelona, Spain.
Laboratorio BioMAT'X R&D&I (HAiDAR I+D+i LAB), Universidad de los Andes, Santiago 7550000, Chile.
Molecules. 2024 Aug 24;29(17):4002. doi: 10.3390/molecules29174002.
The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial production, particularly in osteo-conduction/-induction, and de novo clinical/surgical bone regeneration. Henceforth, this study explores re-purposing salmon waste through a standardized pre-treatment process that minimizes the biological content, followed by a treatment stage to remove proteins, lipids, and other compounds, resulting in a mineral-rich substrate. Herein, we examined various methods-alkaline hydrolysis, calcination, and NaOH hydrolysis-to better identify and determine the most efficient and effective process for producing bio-functional nano-sized hydroxyapatite. Through comprehensive chemical, physical, and biological assessments, including Raman spectroscopy and X-ray diffraction, we also optimized the extraction process. Our modified and innovative alkaline hydrolysis-calcination method yielded salmon-derived hydroxyapatite with a highly crystalline structure, an optimal Ca/P ratio, and excellent biocompatibility. The attractive nano-scale cellular/tissular properties and favorable molecular characteristics, particularly well-suited for bone repair, are comparable to or even surpass those of synthetic, human, bovine, and porcine hydroxyapatite, positioning it as a promising candidate for use in tissue engineering, wound healing, and regenerative medicine indications.
随着传统选择在生物相容性、与人体组织的功能整合、相关成本和可持续性方面经常不足,对新型组织移植和再生伤口护理生物材料的需求正在增长。鲑鱼养殖产生了大量的废物,为生物材料的生产提供了可持续的机会,特别是在骨传导/诱导和新的临床/手术骨再生方面。因此,本研究通过标准化的预处理过程探索了重新利用鲑鱼废物的方法,该过程最大限度地减少了生物含量,然后进行处理阶段以去除蛋白质、脂质和其他化合物,从而得到富含矿物质的基质。在这里,我们研究了各种方法,包括碱性水解、煅烧和 NaOH 水解,以更好地确定和确定生产生物功能纳米级羟基磷灰石的最有效和最有效的方法。通过全面的化学、物理和生物学评估,包括拉曼光谱和 X 射线衍射,我们还优化了提取过程。我们改进和创新的碱性水解-煅烧方法得到了具有高度结晶结构、最佳 Ca/P 比和优异生物相容性的鲑鱼衍生羟基磷灰石。吸引人的纳米级细胞/组织特性和良好的分子特性,特别是非常适合骨修复的特性,与合成的、人源的、牛源的和猪源的羟基磷灰石相当,甚至超过了它们,使其成为组织工程、伤口愈合和再生医学应用的有前途的候选材料。