Sanchez-Romero Ruben, Ramsey Joseph D, Zhang Kun, Glymour Madelyn R K, Huang Biwei, Glymour Clark
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA.
Netw Neurosci. 2019 Feb 1;3(2):274-306. doi: 10.1162/netn_a_00061. eCollection 2019.
We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear systems; Granger causal regression; a multivariate autoregressive model with a permutation test; the Group Iterative Multiple Model Estimation (GIMME) algorithm; the Ramsey et al. non-Gaussian methods; two non-Gaussian methods by Hyvärinen and Smith; a method due to Patel et al.; and the GlobalMIT algorithm. We introduce and also compare two new methods, Fast Adjacency Skewness (FASK) and Two-Step, both of which exploit non-Gaussian features of the BOLD signal. We give theoretical justifications for the latter two algorithms. Our test models include feedback structures with and without direct feedback (2-cycles), excitatory and inhibitory feedback, models using experimentally determined structural connectivities of macaques, and empirical human resting-state and task data. We find that averaged over all of our simulations, including those with 2-cycles, several of these methods have a better than 80% orientation precision (i.e., the probability of a directed edge is in the true structure given that a procedure estimates it to be so) and the two new methods also have better than 80% recall (probability of recovering an orientation in the true structure).
我们测试了几种已提出的以及两种新的统计方法,用于从合成的脑血氧水平依赖(BOLD)时间序列中恢复具有反馈的系统的因果结构。我们比较了用于恢复循环线性系统的第一种正确方法的一种改编方法;格兰杰因果回归;带有置换检验的多元自回归模型;组迭代多模型估计(GIMME)算法;拉姆齐等人的非高斯方法;海瓦林和史密斯提出的两种非高斯方法;帕特尔等人提出的一种方法;以及GlobalMIT算法。我们引入并比较了两种新方法,快速邻接偏度(FASK)和两步法,这两种方法都利用了BOLD信号的非高斯特征。我们给出了后两种算法的理论依据。我们的测试模型包括有和没有直接反馈(2 - 循环)的反馈结构、兴奋性和抑制性反馈、使用猕猴实验确定的结构连接性的模型以及人类静息态和任务的实证数据。我们发现,在我们所有的模拟中,包括那些具有2 - 循环的模拟,平均而言,这些方法中有几种具有高于80%的方向精度(即,给定一个程序估计一条有向边存在,那么它在真实结构中的概率),并且这两种新方法也具有高于80%的召回率(在真实结构中恢复一个方向的概率)。