Suppr超能文献

基于薄层扫描与全胸部计算机断层扫描的影像组学在系统性硬化症间质性肺疾病诊断与分期中的应用:一项对比分析

Radiomics on slice-reduced versus full-chest computed tomography for diagnosis and staging of interstitial lung disease in systemic sclerosis: A comparative analysis.

作者信息

Joye Anja A, Bogowicz Marta, Gote-Schniering Janine, Frauenfelder Thomas, Guckenberger Matthias, Maurer Britta, Tanadini-Lang Stephanie, Gabryś Hubert S

机构信息

University Hospital of Zurich, Department of Radiation Oncology, Rämistrasse 100, Zürich 8091, Switzerland.

Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

出版信息

Eur J Radiol Open. 2024 Aug 30;13:100596. doi: 10.1016/j.ejro.2024.100596. eCollection 2024 Dec.

Abstract

PURPOSE

The purpose of this study was to evaluate the efficacy of radiomics derived from slice-reduced CT (srCT) scans versus full-chest CT (fcCT) for diagnosing and staging of interstitial lung disease (ILD) in systemic sclerosis (SSc), considering the potential to reduce radiation exposure.

MATERIAL AND METHODS

The fcCT corresponded to a standard high-resolution full-chest CT whereas the srCT consisted of nine axial slices. 1451 radiomic features in two dimensions from srCT and 1375 features in three dimensions from fcCT scans were extracted from 166 SSc patients. The study included first- and second-order features from original and wavelet-transformed images. We assessed the predictive performance of quantitative CT (qCT)-based logistic regression (LR) models relying on preselected features and machine learning workflows involving LR and extra-trees classifiers with data-driven feature selection. The area under the receiver operating characteristic curve (AUC) was used to estimate model performance.

RESULTS

The best models for diagnosis and staging ILD achieved AUC=0.85±0.08 and AUC=0.82±0.08 with srCT, and AUC=0.83±0.06 and AUC=0.76±0.08 with fcCT, respectively. srCT-based models showed slightly superior performance over fcCT-based models, particularly in 2D-radiomic analyses when interpolation resolution closely matched the original in-plane resolution. For diagnosis, the LR outperformed qCT-models, whereas for staging, the best results were obtained with a qCT-based model.

CONCLUSIONS

Radiomics from srCT is an effective and preferable alternative to fcCT for diagnosing and staging SSc-ILD. This approach not only enhances predictive accuracy but also minimizes radiation exposure risks, offering a promising avenue for improved treatment decision support in SSc-ILD management.

摘要

目的

本研究旨在评估源自薄层胸部CT(srCT)扫描的影像组学相对于全胸部CT(fcCT)在系统性硬化症(SSc)间质性肺疾病(ILD)诊断和分期中的疗效,同时考虑减少辐射暴露的可能性。

材料与方法

fcCT对应标准的高分辨率全胸部CT,而srCT由9个轴位切片组成。从166例SSc患者的srCT中提取了1451个二维影像组学特征,从fcCT扫描中提取了1375个三维特征。该研究包括来自原始图像和小波变换图像的一阶和二阶特征。我们评估了基于定量CT(qCT)的逻辑回归(LR)模型的预测性能,这些模型依赖于预先选择的特征以及涉及LR和极端随机树分类器且带有数据驱动特征选择的机器学习工作流程。采用受试者操作特征曲线下面积(AUC)来估计模型性能。

结果

诊断和分期ILD的最佳模型在srCT上的AUC分别为0.85±0.08和0.82±0.08,在fcCT上的AUC分别为0.83±0.06和0.76±0.08。基于srCT的模型表现略优于基于fcCT的模型,尤其是在二维影像组学分析中,当插值分辨率与原始平面内分辨率紧密匹配时。对于诊断,LR优于基于qCT的模型,而对于分期,基于qCT的模型取得了最佳结果。

结论

srCT的影像组学是fcCT用于SSc-ILD诊断和分期的有效且更优的替代方法。这种方法不仅提高了预测准确性,还将辐射暴露风险降至最低,为改善SSc-ILD管理中的治疗决策支持提供了一条有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167f/11402420/fadf09b466a7/gr1.jpg

相似文献

2
Transferability of radiomic signatures from experimental to human interstitial lung disease.
Front Med (Lausanne). 2022 Nov 17;9:988927. doi: 10.3389/fmed.2022.988927. eCollection 2022.
5
Quantitative CT and machine learning classification of fibrotic interstitial lung diseases.
Eur Radiol. 2022 Dec;32(12):8152-8161. doi: 10.1007/s00330-022-08875-4. Epub 2022 Jun 9.
7
Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept.
Eur Radiol. 2021 Apr;31(4):1987-1998. doi: 10.1007/s00330-020-07293-8. Epub 2020 Oct 6.
8
Non-contrast computed tomography-based radiomics for staging of connective tissue disease-associated interstitial lung disease.
Front Immunol. 2023 Oct 6;14:1213008. doi: 10.3389/fimmu.2023.1213008. eCollection 2023.

引用本文的文献

1
Integrating Radiomics Signature into Clinical Pathway for Patients with Progressive Pulmonary Fibrosis.
Diagnostics (Basel). 2025 Jan 24;15(3):278. doi: 10.3390/diagnostics15030278.

本文引用的文献

1
Developing the Lung Graph-Based Machine Learning Model for Identification of Fibrotic Interstitial Lung Diseases.
J Imaging Inform Med. 2024 Feb;37(1):268-279. doi: 10.1007/s10278-023-00909-7. Epub 2024 Jan 16.
2
Radiomics to predict the mortality of patients with rheumatoid arthritis-associated interstitial lung disease: A proof-of-concept study.
Front Med (Lausanne). 2023 Jan 9;9:1069486. doi: 10.3389/fmed.2022.1069486. eCollection 2022.
3
Transferability of radiomic signatures from experimental to human interstitial lung disease.
Front Med (Lausanne). 2022 Nov 17;9:988927. doi: 10.3389/fmed.2022.988927. eCollection 2022.
4
Diagnosis and monitoring of systemic sclerosis-associated interstitial lung disease using high-resolution computed tomography.
J Scleroderma Relat Disord. 2022 Oct;7(3):168-178. doi: 10.1177/23971983211064463. Epub 2022 Jan 3.
5
Application Values of 2D and 3D Radiomics Models Based on CT Plain Scan in Differentiating Benign from Malignant Ovarian Tumors.
Biomed Res Int. 2022 Feb 17;2022:5952296. doi: 10.1155/2022/5952296. eCollection 2022.
8
Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians.
J Pers Med. 2021 Jun 25;11(7):602. doi: 10.3390/jpm11070602.
9
Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept.
Eur Radiol. 2021 Apr;31(4):1987-1998. doi: 10.1007/s00330-020-07293-8. Epub 2020 Oct 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验