Li Yuepeng, Deng Junyue, Ma Xuelei, Li Weimin, Wang Zhoufeng
Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China.
West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.
Eur Radiol. 2025 Apr;35(4):1966-1979. doi: 10.1007/s00330-024-11036-4. Epub 2024 Sep 2.
This study evaluates the accuracy of radiomics in predicting lymph node metastasis in non-small cell lung cancer, which is crucial for patient management and prognosis.
Adhering to PRISMA and AMSTAR guidelines, we systematically reviewed literature from March 2012 to December 2023 using databases including PubMed, Web of Science, and Embase. Radiomics studies utilizing computed tomography (CT) and positron emission tomography (PET)/CT imaging were included. The quality of studies was appraised with QUADAS-2 and RQS tools, and the TRIPOD checklist assessed model transparency. Sensitivity, specificity, and AUC values were synthesized to determine diagnostic performance, with subgroup and sensitivity analyses probing heterogeneity and a Fagan plot evaluating clinical applicability.
Our analysis incorporated 42 cohorts from 22 studies. CT-based radiomics demonstrated a sensitivity of 0.84 (95% CI: 0.79-0.88, p < 0.01) and specificity of 0.82 (95% CI: 0.75-0.87, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.92), indicating no publication bias (p-value = 0.54 > 0.05). PET/CT radiomics showed a sensitivity of 0.82 (95% CI: 0.76-0.86, p < 0.01) and specificity of 0.86 (95% CI: 0.81-0.90, p < 0.01), with an AUC of 0.90 (95% CI: 0.87-0.93), with a slight publication bias (p-value = 0.03 < 0.05). Despite high clinical utility, subgroup analysis did not clarify heterogeneity sources, suggesting influences from possible factors like lymph node location and small subgroup sizes.
Radiomics models show accuracy in predicting lung cancer lymph node metastasis, yet further validation with larger, multi-center studies is necessary.
Radiomics models using CT and PET/CT imaging may improve the prediction of lung cancer lymph node metastasis, aiding personalized treatment strategies.
RESEARCH REGISTRATION UNIQUE IDENTIFYING NUMBER (UIN): International Prospective Register of Systematic Reviews (PROSPERO), CRD42023494701. This study has been registered on the PROSPERO platform with a registration date of 18 December 2023. https://www.crd.york.ac.uk/prospero/ KEY POINTS: The study explores radiomics for lung cancer lymph node metastasis detection, impacting surgery and prognosis. Radiomics improves the accuracy of lymph node metastasis prediction in lung cancer. Radiomics can aid in the prediction of lymph node metastasis in lung cancer and personalized treatment.
本研究评估了影像组学在预测非小细胞肺癌淋巴结转移方面的准确性,这对患者管理和预后至关重要。
遵循PRISMA和AMSTAR指南,我们使用包括PubMed、科学网和Embase在内的数据库,系统回顾了2012年3月至2023年12月的文献。纳入了利用计算机断层扫描(CT)和正电子发射断层扫描(PET)/CT成像的影像组学研究。使用QUADAS - 2和RQS工具评估研究质量,TRIPOD清单评估模型透明度。综合敏感性、特异性和AUC值以确定诊断性能,通过亚组分析和敏感性分析探究异质性,并使用Fagan图评估临床适用性。
我们的分析纳入了22项研究中的42个队列。基于CT的影像组学显示敏感性为0.84(95%置信区间:0.79 - 0.88,p < 0.01),特异性为0.82(95%置信区间:0.75 - 0.87,p < 0.01),AUC为0.90(95%置信区间:0.87 - 0.92),表明无发表偏倚(p值 = 0.54 > 0.05)。PET/CT影像组学显示敏感性为0.82(95%置信区间:0.76 - 0.86,p < 0.01),特异性为0.86(95%置信区间:0.81 - 0.90,p < 0.01),AUC为0.90(95%置信区间:0.87 - 0.93),存在轻微发表偏倚(p值 = 0.03 < 0.05)。尽管具有较高的临床实用性,但亚组分析未明确异质性来源,提示可能受淋巴结位置和亚组规模较小等因素影响。
影像组学模型在预测肺癌淋巴结转移方面显示出准确性,但仍需更大规模的多中心研究进行进一步验证。
使用CT和PET/CT成像的影像组学模型可能改善肺癌淋巴结转移的预测,有助于制定个性化治疗策略。
研究注册唯一识别号(UIN):国际系统评价前瞻性注册库(PROSPERO),CRD42023494701。本研究已于2023年12月18日在PROSPERO平台注册。https://www.crd.york.ac.uk/prospero/ 要点:本研究探索影像组学用于肺癌淋巴结转移检测,影响手术和预后。影像组学提高了肺癌淋巴结转移预测的准确性。影像组学有助于肺癌淋巴结转移的预测和个性化治疗。