Alshinwan Mohammad, Khashan Osama A, Khader Mohammed, Tarawneh Omar, Shdefat Ahmed, Mostafa Nour, AbdElminaam Diaa Salama
Faculty of Information Technology, Applied Science Private University, Amman 11931, Jordan.
Research and Innovation Centers, Rabdan Academy, Abu Dhabi P.O. Box 114646, United Arab Emirates.
Heliyon. 2024 Aug 23;10(17):e36663. doi: 10.1016/j.heliyon.2024.e36663. eCollection 2024 Sep 15.
This paper introduces a novel hybrid optimization algorithm, PDO-DE, which integrates the Prairie Dog Optimization (PDO) algorithm with the Differential Evolution (DE) strategy. This research aims to develop an algorithm that efficiently addresses complex optimization problems in engineering design and network intrusion detection systems. Our method enhances the PDO's search capabilities by incorporating the DE's principal mechanisms of mutation and crossover, facilitating improved solution exploration and exploitation. We evaluate the effectiveness of the PDO-DE algorithm through rigorous testing on 23 classical benchmark functions, five engineering design problems, and a network intrusion detection system (NIDS). The results indicate that PDO-DE outperforms several state-of-the-art optimization algorithms regarding convergence speed and accuracy, demonstrating its robustness and adaptability across different problem domains. The PDO-DE algorithm's potential applications extend to engineering challenges and cybersecurity issues, where efficient and reliable solutions are critical; for example, the NIDS results show significant results in detection rate, false alarm, and accuracy with 98.1%, 2.4%, and 96%, respectively. The innovative integration of PDO and DE contributes significantly to stochastic optimization and swarm intelligence, offering a promising new tool for tackling diverse optimization problems. In conclusion, the PDO-DE algorithm represents a significant scientific advancement in hybrid optimization techniques, providing a more effective approach for solving real-world problems that require high precision and optimal resource utilization.
本文介绍了一种新颖的混合优化算法——PDO-DE,它将草原犬鼠优化(PDO)算法与差分进化(DE)策略相结合。本研究旨在开发一种算法,以有效解决工程设计和网络入侵检测系统中的复杂优化问题。我们的方法通过纳入DE的变异和交叉主要机制来增强PDO的搜索能力,促进更好的解的探索和利用。我们通过对23个经典基准函数、五个工程设计问题和一个网络入侵检测系统(NIDS)进行严格测试,评估了PDO-DE算法的有效性。结果表明,在收敛速度和准确性方面,PDO-DE优于几种先进的优化算法,证明了其在不同问题领域的鲁棒性和适应性。PDO-DE算法的潜在应用扩展到工程挑战和网络安全问题,在这些领域中高效可靠的解决方案至关重要;例如,NIDS的结果在检测率、误报率和准确率方面分别达到了98.1%、2.4%和96%,效果显著。PDO和DE的创新整合对随机优化和群体智能做出了重大贡献,为解决各种优化问题提供了一种有前途的新工具。总之,PDO-DE算法代表了混合优化技术的一项重大科学进展,为解决需要高精度和最优资源利用的实际问题提供了一种更有效的方法。