Alruwaili Fahad F
Department of Computer and Network Engineering, College of Computing and Information Technology, Shaqra University, Sharqa, Saudi Arabia.
Sci Rep. 2025 Aug 28;15(1):31673. doi: 10.1038/s41598-025-10410-6.
The Internet of Things (IoT) is emerging as a functional occurrence in developing numerous critical applications. These applications rely on centralized storage, raising concerns about confidentiality, security, and single points of failure. Conventional IoT security methods are inadequate to address the growing nature of attacks and threats. Blockchain technology has been employed by many investigators in intrusion detection systems for enhanced detection and monitoring, inhibition of mischievous attacks or activities, and tamper-proof dealings and storage in IoT networks and devices. At present, using artificial intelligence knowledge, mainly deep learning and machine learning approaches, endures the basics to deliver a dynamically improved and up-to-date security method for next-generation IoT systems. This study proposes a Leveraging Blockchain for Cybersecurity Detection Using Golden Jackal Optimization (LBCCD-GJO) method in IoT. The presented LBCCD-GJO method initially applies data pre-processing using min-max normalization to convert input data into a beneficial format. Moreover, the feature selection process is implemented by utilizing the golden jackal optimization (GJO) model. Furthermore, the proposed LBCCD-GJO model employs the gated recurrent unit (GRU) technique for the classification process of cyberattacks. Finally, the hyperparameter selection of the GRU technique is performed by implementing the hybrid of prairie dog optimization with a differential evolution (PDO-DE) technique. An extensive set of simulations was performed to exhibit the promising outcomes of the LBCCD-GJO methodology under the TON_IoT_Train_Test_Network dataset. The experimental validation of the LBCCD-GJO methodology is 99.67% compared to the previous techniques.
物联网(IoT)正在成为开发众多关键应用程序中的一种功能性现象。这些应用程序依赖集中存储,引发了对保密性、安全性和单点故障的担忧。传统的物联网安全方法不足以应对日益增长的攻击和威胁。许多研究人员已将区块链技术应用于入侵检测系统,以加强检测和监控、抑制恶意攻击或活动,以及在物联网网络和设备中进行防篡改交易和存储。目前,利用人工智能知识,主要是深度学习和机器学习方法,仍然是为下一代物联网系统提供动态改进和最新安全方法的基础。本研究提出了一种在物联网中使用金豺优化(GJO)进行网络安全检测的区块链利用方法(LBCCD-GJO)。所提出的LBCCD-GJO方法首先使用最小-最大归一化进行数据预处理,将输入数据转换为有益的格式。此外,通过利用金豺优化(GJO)模型来实现特征选择过程。此外,所提出的LBCCD-GJO模型采用门控循环单元(GRU)技术进行网络攻击的分类过程。最后,通过实施草原犬优化与差分进化(PDO-DE)技术的混合来进行GRU技术的超参数选择。在TON_IoT_Train_Test_Network数据集下进行了大量模拟,以展示LBCCD-GJO方法的良好结果。与先前技术相比,LBCCD-GJO方法的实验验证率为99.67%。