Muccilli Samantha G, Schwarz Benjamin, Jessop Forrest, Shannon Jeffrey G, Bohrnsen Eric, Shue Byron, Hong Seon-Hui, Hsu Thomas, Ashbrook Alison W, Guarnieri Joseph W, Lack Justin, Wallace Douglas C, Bosio Catharine M, MacDonald Margaret R, Rice Charles M, Yewdell Jonathan W, Best Sonja M
Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT.
Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD.
bioRxiv. 2024 Sep 15:2024.09.04.611167. doi: 10.1101/2024.09.04.611167.
The yellow fever virus 17D (YFV-17D) live attenuated vaccine is considered one of the successful vaccines ever generated associated with high antiviral immunity, yet the signaling mechanisms that drive the response in infected cells are not understood. Here, we provide a molecular understanding of how metabolic stress and innate immune responses are linked to drive type I IFN expression in response to YFV-17D infection. Comparison of YFV-17D replication with its parental virus, YFV-Asibi, and a related dengue virus revealed that IFN expression requires RIG-I-like Receptor signaling through MAVS, as expected. However, YFV-17D uniquely induces mitochondrial respiration and major metabolic perturbations, including hyperactivation of electron transport to fuel ATP synthase. Mitochondrial hyperactivity generates reactive oxygen species (mROS) and peroxynitrite, blocking of which abrogated IFN expression in non-immune cells without reducing YFV-17D replication. Scavenging ROS in YFV-17D-infected human dendritic cells increased cell viability yet globally prevented expression of IFN signaling pathways. Thus, adaptation of YFV-17D for high growth uniquely imparts mitochondrial hyperactivity generating mROS and peroxynitrite as the critical messengers that convert a blunted IFN response into maximal activation of innate immunity essential for vaccine effectiveness.
黄热病病毒17D(YFV-17D)减毒活疫苗被认为是有史以来成功研发的疫苗之一,具有高抗病毒免疫力,但驱动受感染细胞产生应答的信号传导机制尚不清楚。在此,我们从分子层面理解了代谢应激和先天免疫应答如何相互关联,以驱动对YFV-17D感染的I型干扰素表达。将YFV-17D与其亲本病毒YFV-Asibi以及一种相关登革病毒的复制情况进行比较,结果显示,正如预期的那样,干扰素表达需要通过线粒体抗病毒信号蛋白(MAVS)的视黄酸诱导基因I样受体信号传导。然而,YFV-17D独特地诱导线粒体呼吸和主要代谢紊乱,包括电子传递过度激活以驱动ATP合酶。线粒体过度活跃会产生活性氧(mROS)和过氧亚硝酸盐,阻断这些物质会消除非免疫细胞中的干扰素表达,而不会降低YFV-17D的复制。在感染YFV-17D的人树突状细胞中清除活性氧可提高细胞活力,但全面阻止了干扰素信号通路的表达。因此,YFV-17D为实现高生长而进行的适应性改变独特地赋予线粒体过度活跃,产生活性氧和过氧亚硝酸盐,作为关键信使将减弱的干扰素应答转化为对疫苗有效性至关重要的先天免疫的最大激活。