Edler Johanna-Sophie, Terhorst Yannik, Pryss Rüdiger, Baumeister Harald, Cohrdes Caroline
Mental Health Research Unit, Department of Epidemiology and Health Monitoring, Robert Koch Institute, Berlin, Germany.
Department of Clinical Psychology and Psychotherapy, Institute of Psychology and Education, Ulm University, Ulm, Germany.
J Med Internet Res. 2024 Sep 16;26:e45530. doi: 10.2196/45530.
Specialized studies have shown that smartphone-based social interaction data are predictors of depressive and anxiety symptoms. Moreover, at times during the COVID-19 pandemic, social interaction took place primarily remotely. To appropriately test these objective data for their added value for epidemiological research during the pandemic, it is necessary to include established predictors.
Using a comprehensive model, we investigated the extent to which smartphone-based social interaction data contribute to the prediction of depressive and anxiety symptoms, while also taking into account well-established predictors and relevant pandemic-specific factors.
We developed the Corona Health App and obtained participation from 490 Android smartphone users who agreed to allow us to collect smartphone-based social interaction data between July 2020 and February 2021. Using a cross-sectional design, we automatically collected data concerning average app use in terms of the categories video calls and telephony, messenger use, social media use, and SMS text messaging use, as well as pandemic-specific predictors and sociodemographic covariates. We statistically predicted depressive and anxiety symptoms using elastic net regression. To exclude overfitting, we used 10-fold cross-validation.
The amount of variance explained (R) was 0.61 for the prediction of depressive symptoms and 0.57 for the prediction of anxiety symptoms. Of the smartphone-based social interaction data included, only messenger use proved to be a significant negative predictor of depressive and anxiety symptoms. Video calls were negative predictors only for depressive symptoms, and SMS text messaging use was a negative predictor only for anxiety symptoms.
The results show the relevance of smartphone-based social interaction data in predicting depressive and anxiety symptoms. However, even taken together in the context of a comprehensive model with well-established predictors, the data only add a small amount of value.
专业研究表明,基于智能手机的社交互动数据是抑郁和焦虑症状的预测指标。此外,在新冠疫情期间的某些时段,社交互动主要通过远程方式进行。为了在疫情期间适当地检验这些客观数据在流行病学研究中的附加价值,纳入既定的预测指标是必要的。
我们使用一个综合模型,研究基于智能手机的社交互动数据在预测抑郁和焦虑症状方面的贡献程度,同时考虑到既定的预测指标和与疫情相关的特定因素。
我们开发了新冠健康应用程序,并获得了490名安卓智能手机用户的参与,他们同意我们在2020年7月至2021年2月期间收集基于智能手机的社交互动数据。采用横断面设计,我们自动收集了有关视频通话和电话、即时通讯使用、社交媒体使用以及短信使用等类别方面的平均应用程序使用数据,以及与疫情相关的预测指标和社会人口统计学协变量。我们使用弹性网络回归对抑郁和焦虑症状进行统计预测。为了排除过度拟合,我们使用了10折交叉验证。
抑郁症状预测的解释方差量(R)为0.61,焦虑症状预测的解释方差量为0.57。在所纳入的基于智能手机的社交互动数据中,只有即时通讯使用被证明是抑郁和焦虑症状的显著负向预测指标。视频通话仅是抑郁症状的负向预测指标,短信使用仅是焦虑症状的负向预测指标。
结果表明基于智能手机的社交互动数据在预测抑郁和焦虑症状方面具有相关性。然而,即使在包含既定预测指标的综合模型背景下综合考虑,这些数据也只增加了少量价值。