Zou Rongjun, Tao Jun, He Jie, Wang Chaojie, Tan Songtao, Xia Yu, Chang Xing, Li Ruibing, Wang Ge, Zhou Hao, Fan Xiaoping
Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.
The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
Research (Wash D C). 2022 Dec 15;2022:0001. doi: 10.34133/research.0001. eCollection 2022.
Disruption of the mitochondrial quality surveillance (MQS) system contributes to mitochondrial dysfunction in diabetic cardiomyopathy (DCM). In this study, we observed that cardiac expression of phosphoglycerate mutase 5 (PGAM5), a mitochondrial Ser/Thr protein phosphatase, is upregulated in mice with streptozotocin-induced DCM. Notably, DCM-related cardiac structural and functional deficits were negated in cardiomyocyte-specific knockout ( ) mice. Hyperglycemic stress impaired adenosine triphosphate production, reduced respiratory activity, and prolonged mitochondrial permeability transition pore opening in acutely isolated neonatal cardiomyocytes from control mice, and these effects were markedly prevented in cardiomyocytes from mice. Likewise, three main MQS-governed processes-namely, mitochondrial fission/fusion cycling, mitophagy, and biogenesis-were disrupted by hyperglycemia in , but not in , cardiomyocytes. On the basis of bioinformatics prediction of interaction between PGAM5 and prohibitin 2 (PHB2), an inner mitochondrial membrane-associated scaffolding protein, co-immunoprecipitation, and immunoblot assays demonstrated that PGAM5 dephosphorylates PHB2 on Ser91. Transfection of cardiomyocytes with phosphodefective or phosphomimetic Ser91 mutants of PHB2 confirmed a critical role for PGAM5-mediated dephosphorylation of PHB2 in mitochondrial dysfunction associated with hyperglycemic stress. Furthermore, knockin mice expressing phosphomimetic PHB2 were resistant to diabetes-induced cardiac dysfunction. Our findings highlight the PGAM-PHB2 axis as a novel and critical regulator of mitochondrial dysfunction in DCM.
线粒体质量监控(MQS)系统的破坏会导致糖尿病性心肌病(DCM)中的线粒体功能障碍。在本研究中,我们观察到磷酸甘油酸变位酶5(PGAM5,一种线粒体丝氨酸/苏氨酸蛋白磷酸酶)在链脲佐菌素诱导的DCM小鼠中的心脏表达上调。值得注意的是,在心肌细胞特异性敲除( )小鼠中,与DCM相关的心脏结构和功能缺陷得到了消除。高血糖应激损害了三磷酸腺苷的产生,降低了呼吸活性,并延长了从对照 小鼠急性分离的新生心肌细胞中的线粒体通透性转换孔开放时间,而在 小鼠的心肌细胞中这些影响得到了明显的预防。同样,高血糖破坏了 心肌细胞中由MQS调控的三个主要过程,即线粒体裂变/融合循环、线粒体自噬和生物合成,但在 心肌细胞中未发生这种情况。基于PGAM5与线粒体内膜相关支架蛋白 prohibitin 2(PHB2)之间相互作用的生物信息学预测、免疫共沉淀和免疫印迹分析表明,PGAM5使PHB2的Ser91位点去磷酸化。用PHB2的磷酸缺陷型或磷酸模拟型Ser91突变体转染心肌细胞证实,PGAM5介导的PHB2去磷酸化在与高血糖应激相关的线粒体功能障碍中起关键作用。此外,表达磷酸模拟型PHB2的敲入小鼠对糖尿病诱导的心脏功能障碍具有抗性。我们的研究结果突出了PGAM - PHB2轴是DCM中线粒体功能障碍的一种新的关键调节因子。