Ntalianis Evangelos, Cauwenberghs Nicholas, Sabovčik František, Santana Everton, Haddad Francois, Claes Jomme, Michielsen Matthijs, Claessen Guido, Budts Werner, Goetschalckx Kaatje, Cornelissen Véronique, Kuznetsova Tatiana
Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
iScience. 2024 Aug 22;27(9):110792. doi: 10.1016/j.isci.2024.110792. eCollection 2024 Sep 20.
Nowadays cardiorespiratory fitness (CRF) is assessed using summary indexes of cardiopulmonary exercise tests (CPETs). Yet, raw time-series CPET recordings may hold additional information with clinical relevance. Therefore, we investigated whether analysis of raw CPET data using dynamic time warping combined with k-medoids could identify distinct CRF phenogroups and improve cardiovascular (CV) risk stratification. CPET recordings from 1,399 participants (mean age, 56.4 years; 37.7% women) were separated into 5 groups with distinct patterns. Cluster 5 was associated with the worst CV profile with higher use of antihypertensive medication and a history of CV disease, while cluster 1 represented the most favorable CV profile. Clusters 4 (hazard ratio: 1.30; = 0.033) and 5 (hazard ratio: 1.36; = 0.0088) had a significantly higher risk of incident adverse events compared to clusters 1 and 2. The model evaluation in the external validation cohort revealed similar patterns. Therefore, an integrative CRF profiling might facilitate CV risk stratification and management.
如今,心肺适能(CRF)是通过心肺运动试验(CPET)的综合指标来评估的。然而,CPET原始时间序列记录可能包含具有临床相关性的额外信息。因此,我们研究了使用动态时间规整结合k-中心点算法对CPET原始数据进行分析是否能够识别出不同的CRF表型组,并改善心血管(CV)风险分层。对1399名参与者(平均年龄56.4岁;37.7%为女性)的CPET记录进行分析,将其分为5个具有不同模式的组。第5组与最差的心血管状况相关,使用抗高血压药物的比例更高且有心血管疾病史,而第1组代表最有利的心血管状况。与第1组和第2组相比,第4组(风险比:1.30;P = 0.033)和第5组(风险比:1.36;P = 0.0088)发生不良事件的风险显著更高。外部验证队列中的模型评估显示出类似的模式。因此,综合的CRF分析可能有助于CV风险分层和管理。