College of Management, Shenzhen University, Shenzhen, China.
Greater Bay Area International Institute for Innovations, Shenzhen University, Shenzhen, China.
Comput Biol Med. 2024 Nov;182:109107. doi: 10.1016/j.compbiomed.2024.109107. Epub 2024 Sep 16.
Variations in symptoms and indistinguishable depression episodes of unipolar depression (UD) and bipolar disorder (BD) make the discrimination difficult and time-consuming. For adolescents with high disease prevalence, an efficient diagnostic tool is important for the discrimination and treatment of BU and UD.
This multi-center cross-sectional study involved 1587 UD and 246 BD adolescents aged 12-18. A combination of standard questionnaires and demographic information was collected for the construction of a full-item list. The unequal patient number was balanced with three data balancing algorithms, and 4 machine learning algorithms were compared for the discrimination ability of UD and BD in three age groups: all ages, 12-15 and 16-18. Random forest (RF) with the highest accuracy were used to rank the importance of features/items and construct the 25-item shortlist. A separate dataset was used for the final performance evaluation with the shortlist, and the discrimination ability for UD and BD was investigated.
RF performed the best for UD and BD discrimination in all 3 age groups (AUC 0.88-0.90). The most important features that differentiate UD from BD belong to Parental Bonding Instrument (PBI) and Loneliness Scale of the University of California at Los Angeles (UCLA). With RF and the 25-item shortlist, the diagnostic accuracy can still reach around 80 %, achieving 95 % of the accuracy levels obtained with all features.
Through machine learning algorithms, the most influencing factors for UD and BD classification were recombined and applied for rapid diagnosis. This highly feasible method holds the potential for convenient and accurate diagnosis of young patients in research and clinical practice.
单相抑郁(UD)和双相障碍(BD)的症状和难以区分的抑郁发作的变化使得鉴别变得困难且耗时。对于疾病高发的青少年来说,一种有效的诊断工具对于区分和治疗 BU 和 UD 很重要。
这项多中心横断面研究纳入了 1587 例 UD 和 246 例 BD 青少年,年龄为 12-18 岁。采用标准问卷和人口统计学信息相结合的方法构建全项目清单。使用三种数据平衡算法平衡不等的患者数量,并比较四种机器学习算法在三个年龄组(所有年龄、12-15 岁和 16-18 岁)中对 UD 和 BD 的鉴别能力。随机森林(RF)具有最高的准确性,用于对特征/项目的重要性进行排序,并构建 25 项简表。使用单独的数据集对简表进行最终性能评估,并研究其对 UD 和 BD 的鉴别能力。
RF 在所有 3 个年龄组中对 UD 和 BD 的鉴别性能最佳(AUC 0.88-0.90)。区分 UD 和 BD 的最重要特征属于父母养育方式问卷(PBI)和洛杉矶加州大学孤独感量表(UCLA)。使用 RF 和 25 项简表,诊断准确性仍可达到 80%左右,达到使用所有特征获得的 95%的准确性水平。
通过机器学习算法,重新组合和应用对 UD 和 BD 分类影响最大的因素,用于快速诊断。这种高度可行的方法具有在研究和临床实践中为年轻患者进行便捷和准确诊断的潜力。