Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, A zone, No.199 Nansihuan West Road, Fengtai District, Beijing 100070, China.
Department of Hyperbaric Oxygen, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China.
Diving Hyperb Med. 2024 Sep 30;54(3):212-216. doi: 10.28920/dhm54.3.212-216.
The stability of a new hyperbaric ventilator (Shangrila590, Beijing Aeonmed Company, Beijing, China) at different clinically relevant pressures in a hyperbaric chamber during pressure-controlled ventilation (PCV) was investigated.
The ventilator was connected to a test lung in the multiplace hyperbaric chamber. The inspiratory pressure (PI) of the ventilator was set to 1.0, 1.5, 2.0, 2.5 and 3.0 kPa (approximately 10, 15, 20, 25 and 30 cmH₂O). The compliance and resistance of the test lung were set to 200 mL·kPa⁻¹ and 2 kPa·L⁻¹·s⁻¹, respectively. Experiments were conducted at 101, 203 and 284 kPa ambient pressure (1.0, 2.0 and 2.8 atmospheres absolute respectively). At each of the 5 PI values, the tidal volume (VT), peak inspiratory pressure (Ppeak) and peak inspiratory flow (Fpeak) displayed by the ventilator and the test lung were recorded for 20 cycles. Test lung data were considered the actual ventilation values. The ventilation data were compared among the three groups to evaluate the stability of the ventilator.
At every PI, the Ppeak detected by the ventilator decreased slightly with increasing ambient pressure. The Fpeak values measured by the test lung decreased substantially as the ambient pressure increased. Nevertheless, the reduction in VT at 284 kPa and PI 30 cmH₂O (compared to performance at 101 kPa) was comparatively small (approximately 60 ml).
In PCV mode this ventilator provided relatively stable VT across clinically relevant PI values to ambient pressures as high as 284 kPa. However, because Fpeak decreases at higher ambient pressure, some user adjustment might be necessary for precise VT maintenance during clinical use at higher PIs and ambient pressures.
本研究旨在探讨一种新型的正压通气呼吸机(Shangrila590,北京奥源科技发展有限公司,北京,中国)在压力控制通气(PCV)模式下于不同临床相关压力的高压舱内的稳定性。
将呼吸机与高压舱内的测试肺连接。将呼吸机的吸气压力(PI)设置为 1.0、1.5、2.0、2.5 和 3.0 kPa(分别约为 10、15、20、25 和 30 cmH₂O)。测试肺的顺应性和阻力分别设置为 200 mL·kPa⁻¹和 2 kPa·L⁻¹·s⁻¹。在 101、203 和 284 kPa 环境压力(分别为 1.0、2.0 和 2.8 个大气压)下进行实验。在 5 个 PI 值中的每一个,记录呼吸机和测试肺显示的潮气量(VT)、吸气峰压(Ppeak)和吸气峰流速(Fpeak)20 个周期。测试肺数据被认为是实际通气值。将通气数据进行比较,以评估呼吸机的稳定性。
在每个 PI 下,呼吸机检测到的 Ppeak 随着环境压力的增加而略有下降。测试肺测量的 Fpeak 值随着环境压力的增加而大幅下降。然而,在 284 kPa 和 PI 30 cmH₂O 下的 VT 减少量(与 101 kPa 时的性能相比)相对较小(约 60 ml)。
在 PCV 模式下,该呼吸机在高达 284 kPa 的环境压力下,为临床相关 PI 值提供了相对稳定的 VT。然而,由于 Fpeak 在较高的环境压力下下降,在较高的 PI 和环境压力下进行临床使用时,可能需要对精确的 VT 维持进行一些用户调整。