Suppr超能文献

基于两阶段信号融合与深度多尺度多传感器网络的滚动轴承故障诊断

Rolling bearings fault diagnosis based on two-stage signal fusion and deep multi-scale multi-sensor network.

作者信息

Pan Zuozhou, Guan Yang, Fan Fengjie, Zheng Yuanjin, Lin Zhiping, Meng Zong

机构信息

College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China; College of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.

College of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China.

出版信息

ISA Trans. 2024 Nov;154:311-334. doi: 10.1016/j.isatra.2024.08.033. Epub 2024 Sep 7.

Abstract

In order to realize high-precision diagnosis of bearings faults in a multi-sensor detection environment, a fault diagnosis method based on two-stage signal fusion and deep multi-scale multi-sensor networks is proposed. Firstly, the signals are decomposed and fused using weighted empirical wavelet transform to enhance weak features and reduce noise. Secondly, an improved random weighting algorithm is proposed to perform a second weighted fusion of the signals to reduce the total mean square error. The fused signals are input into the deep multi-scale residual network, the feature information of different convolutional layers is extracted through dilated convolution, and the features are fused using pyramid theory. Finally, the bearings states are classified according to the fusion features. Experiment results show the effectiveness and superiority of this method.

摘要

为了在多传感器检测环境中实现轴承故障的高精度诊断,提出了一种基于两阶段信号融合和深度多尺度多传感器网络的故障诊断方法。首先,利用加权经验小波变换对信号进行分解和融合,以增强微弱特征并降低噪声。其次,提出一种改进的随机加权算法对信号进行二次加权融合,以降低总均方误差。将融合后的信号输入到深度多尺度残差网络中,通过空洞卷积提取不同卷积层的特征信息,并利用金字塔理论对特征进行融合。最后,根据融合特征对轴承状态进行分类。实验结果表明了该方法的有效性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验